// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Points are fixed positions in affine space with no length or direction. This //! disinguishes them from vectors, which have a length and direction, but do //! not have a fixed position. use std::fmt; use std::mem; use std::ops::*; use rust_num::{One, Zero}; use approx::ApproxEq; use array::Array; use matrix::Matrix; use num::{BaseNum, BaseFloat}; use vector::*; /// A point in 2-dimensional space. #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Point2 { pub x: S, pub y: S } /// A point in 3-dimensional space. #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Point3 { pub x: S, pub y: S, pub z: S } impl Point2 { #[inline] pub fn new(x: S, y: S) -> Point2 { Point2 { x: x, y: y } } } impl Point3 { #[inline] pub fn new(x: S, y: S, z: S) -> Point3 { Point3 { x: x, y: y, z: z } } } impl Point3 { #[inline] pub fn from_homogeneous(v: Vector4) -> Point3 { let e = v.truncate() * (S::one() / v.w); Point3::new(e.x, e.y, e.z) //FIXME } #[inline] pub fn to_homogeneous(self) -> Vector4 { Vector4::new(self.x, self.y, self.z, S::one()) } } /// Points in a [Euclidean space](https://en.wikipedia.org/wiki/Euclidean_space) /// with an associated vector space, `Self::Vector`. /// /// # Point-Vector distinction /// /// `cgmath` distinguishes between points and vectors in the following way: /// /// - Points are _locations_ relative to an origin /// - Vectors are _displacements_ between those points /// /// For example, to find the midpoint between two points, you can write the /// following: /// /// ```rust /// use cgmath::Point3; /// /// let p0 = Point3::new(1.0, 2.0, 3.0); /// let p1 = Point3::new(-3.0, 1.0, 2.0); /// let midpoint: Point3 = p0 + (p1 - p0) * 0.5; /// ``` /// /// Breaking the expression up, and adding explicit types makes it clearer /// to see what is going on: /// /// ```rust /// # use cgmath::{Point3, Vector3}; /// # /// # let p0 = Point3::new(1.0, 2.0, 3.0); /// # let p1 = Point3::new(-3.0, 1.0, 2.0); /// # /// let dv: Vector3 = p1 - p0; /// let half_dv: Vector3 = dv * 0.5; /// let midpoint: Point3 = p0 + half_dv; /// ``` /// /// ## Converting between points and vectors /// /// Points can be converted to and from displacement vectors using the /// `Point::{from_vec, to_vec}` methods. Note that under the hood these are /// implemented as inlined a type conversion, so should not have any performance /// implications. /// /// ## References /// /// - [CGAL 4.7 - 2D and 3D Linear Geometry Kernel: 3.1 Points and Vectors](http://doc.cgal.org/latest/Kernel_23/index.html#Kernel_23PointsandVectors) /// - [What is the difference between a point and a vector](http://math.stackexchange.com/q/645827) /// pub trait Point: Copy + Clone where // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092 Self: Array::Scalar>, Self: Add<::Vector, Output = Self>, Self: Sub::Vector>, Self: Mul<::Scalar, Output = Self>, Self: Div<::Scalar, Output = Self>, Self: Rem<::Scalar, Output = Self>, { /// The associated scalar. /// /// Due to the equality constraints demanded by `Self::Vector`, this is effectively just an /// alias to `Self::Vector::Scalar`. type Scalar: BaseNum; /// The associated space of displacement vectors. type Vector: Vector; /// The point at the origin of the Euclidean space. fn origin() -> Self; /// Convert a displacement vector to a point. /// /// This can be considered equivalent to the addition of the displacement /// vector `v` to to `Self::origin()`. fn from_vec(v: Self::Vector) -> Self; /// Convert a point to a displacement vector. /// /// This can be seen as equivalent to the displacement vector from /// `Self::origin()` to `self`. fn to_vec(self) -> Self::Vector; /// This is a weird one, but its useful for plane calculations. fn dot(self, v: Self::Vector) -> Self::Scalar; } macro_rules! impl_point { ($PointN:ident { $($field:ident),+ }, $VectorN:ident, $n:expr) => { impl Array for $PointN { type Element = S; #[inline] fn sum(self) -> S { fold_array!(add, { $(self.$field),+ }) } #[inline] fn product(self) -> S { fold_array!(mul, { $(self.$field),+ }) } #[inline] fn min(self) -> S { fold_array!(partial_min, { $(self.$field),+ }) } #[inline] fn max(self) -> S { fold_array!(partial_max, { $(self.$field),+ }) } } impl Point for $PointN { type Scalar = S; type Vector = $VectorN; #[inline] fn origin() -> $PointN { $PointN { $($field: S::zero()),+ } } #[inline] fn from_vec(v: $VectorN) -> $PointN { $PointN::new($(v.$field),+) } #[inline] fn to_vec(self) -> $VectorN { $VectorN::new($(self.$field),+) } #[inline] fn dot(self, v: $VectorN) -> S { $VectorN::new($(self.$field * v.$field),+).sum() } } impl ApproxEq for $PointN { type Epsilon = S; #[inline] fn approx_eq_eps(&self, other: &$PointN, epsilon: &S) -> bool { $(self.$field.approx_eq_eps(&other.$field, epsilon))&&+ } } impl_operator!( Add<$VectorN > for $PointN { fn add(lhs, rhs) -> $PointN { $PointN::new($(lhs.$field + rhs.$field),+) } }); impl_assignment_operator!( AddAssign<$VectorN > for $PointN { fn add_assign(&mut self, vector) { $(self.$field += vector.$field);+ } }); impl_operator!( Sub<$PointN > for $PointN { fn sub(lhs, rhs) -> $VectorN { $VectorN::new($(lhs.$field - rhs.$field),+) } }); impl_operator!( Mul for $PointN { fn mul(point, scalar) -> $PointN { $PointN::new($(point.$field * scalar),+) } }); impl_operator!( Div for $PointN { fn div(point, scalar) -> $PointN { $PointN::new($(point.$field / scalar),+) } }); impl_operator!( Rem for $PointN { fn rem(point, scalar) -> $PointN { $PointN::new($(point.$field % scalar),+) } }); impl_assignment_operator!( MulAssign for $PointN { fn mul_assign(&mut self, scalar) { $(self.$field *= scalar);+ } }); impl_assignment_operator!( DivAssign for $PointN { fn div_assign(&mut self, scalar) { $(self.$field /= scalar);+ } }); impl_assignment_operator!( RemAssign for $PointN { fn rem_assign(&mut self, scalar) { $(self.$field %= scalar);+ } }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_scalar_ops!($PointN { $($field),+ }); impl_index_operators!($PointN, $n, S, usize); impl_index_operators!($PointN, $n, [S], Range); impl_index_operators!($PointN, $n, [S], RangeTo); impl_index_operators!($PointN, $n, [S], RangeFrom); impl_index_operators!($PointN, $n, [S], RangeFull); } } macro_rules! impl_scalar_ops { ($PointN:ident<$S:ident> { $($field:ident),+ }) => { impl_operator!(Mul<$PointN<$S>> for $S { fn mul(scalar, point) -> $PointN<$S> { $PointN::new($(scalar * point.$field),+) } }); impl_operator!(Div<$PointN<$S>> for $S { fn div(scalar, point) -> $PointN<$S> { $PointN::new($(scalar / point.$field),+) } }); impl_operator!(Rem<$PointN<$S>> for $S { fn rem(scalar, point) -> $PointN<$S> { $PointN::new($(scalar % point.$field),+) } }); }; } impl_point!(Point2 { x, y }, Vector2, 2); impl_point!(Point3 { x, y, z }, Vector3, 3); impl_fixed_array_conversions!(Point2 { x: 0, y: 1 }, 2); impl_fixed_array_conversions!(Point3 { x: 0, y: 1, z: 2 }, 3); impl_tuple_conversions!(Point2 { x, y }, (S, S)); impl_tuple_conversions!(Point3 { x, y, z }, (S, S, S)); impl fmt::Debug for Point2 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Point2 ")); <[S; 2] as fmt::Debug>::fmt(self.as_ref(), f) } } impl fmt::Debug for Point3 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Point3 ")); <[S; 3] as fmt::Debug>::fmt(self.as_ref(), f) } } #[cfg(test)] mod tests { mod point2 { use point::*; const POINT2: Point2 = Point2 { x: 1, y: 2 }; #[test] fn test_index() { assert_eq!(POINT2[0], POINT2.x); assert_eq!(POINT2[1], POINT2.y); } #[test] fn test_index_mut() { let mut p = POINT2; *&mut p[0] = 0; assert_eq!(p, [0, 2].into()); } #[test] #[should_panic] fn test_index_out_of_bounds() { POINT2[2]; } #[test] fn test_index_range() { assert_eq!(&POINT2[..0], &[]); assert_eq!(&POINT2[..1], &[1]); assert_eq!(POINT2[..0].len(), 0); assert_eq!(POINT2[..1].len(), 1); assert_eq!(&POINT2[2..], &[]); assert_eq!(&POINT2[1..], &[2]); assert_eq!(POINT2[2..].len(), 0); assert_eq!(POINT2[1..].len(), 1); assert_eq!(&POINT2[..], &[1, 2]); assert_eq!(POINT2[..].len(), 2); } #[test] fn test_into() { let p = POINT2; { let p: [i32; 2] = p.into(); assert_eq!(p, [1, 2]); } { let p: (i32, i32) = p.into(); assert_eq!(p, (1, 2)); } } #[test] fn test_as_ref() { let p = POINT2; { let p: &[i32; 2] = p.as_ref(); assert_eq!(p, &[1, 2]); } { let p: &(i32, i32) = p.as_ref(); assert_eq!(p, &(1, 2)); } } #[test] fn test_as_mut() { let mut p = POINT2; { let p: &mut [i32; 2] = p.as_mut(); assert_eq!(p, &mut [1, 2]); } { let p: &mut (i32, i32) = p.as_mut(); assert_eq!(p, &mut (1, 2)); } } #[test] fn test_from() { assert_eq!(Point2::from([1, 2]), POINT2); { let p = &[1, 2]; let p: &Point2<_> = From::from(p); assert_eq!(p, &POINT2); } { let p = &mut [1, 2]; let p: &mut Point2<_> = From::from(p); assert_eq!(p, &POINT2); } assert_eq!(Point2::from((1, 2)), POINT2); { let p = &(1, 2); let p: &Point2<_> = From::from(p); assert_eq!(p, &POINT2); } { let p = &mut (1, 2); let p: &mut Point2<_> = From::from(p); assert_eq!(p, &POINT2); } } } mod point3 { use point::*; const POINT3: Point3 = Point3 { x: 1, y: 2, z: 3 }; #[test] fn test_index() { assert_eq!(POINT3[0], POINT3.x); assert_eq!(POINT3[1], POINT3.y); assert_eq!(POINT3[2], POINT3.z); } #[test] fn test_index_mut() { let mut p = POINT3; *&mut p[1] = 0; assert_eq!(p, [1, 0, 3].into()); } #[test] #[should_panic] fn test_index_out_of_bounds() { POINT3[3]; } #[test] fn test_index_range() { assert_eq!(&POINT3[..1], &[1]); assert_eq!(&POINT3[..2], &[1, 2]); assert_eq!(POINT3[..1].len(), 1); assert_eq!(POINT3[..2].len(), 2); assert_eq!(&POINT3[2..], &[3]); assert_eq!(&POINT3[1..], &[2, 3]); assert_eq!(POINT3[2..].len(), 1); assert_eq!(POINT3[1..].len(), 2); assert_eq!(&POINT3[..], &[1, 2, 3]); assert_eq!(POINT3[..].len(), 3); } #[test] fn test_into() { let p = POINT3; { let p: [i32; 3] = p.into(); assert_eq!(p, [1, 2, 3]); } { let p: (i32, i32, i32) = p.into(); assert_eq!(p, (1, 2, 3)); } } #[test] fn test_as_ref() { let p = POINT3; { let p: &[i32; 3] = p.as_ref(); assert_eq!(p, &[1, 2, 3]); } { let p: &(i32, i32, i32) = p.as_ref(); assert_eq!(p, &(1, 2, 3)); } } #[test] fn test_as_mut() { let mut p = POINT3; { let p: &mut [i32; 3] = p.as_mut(); assert_eq!(p, &mut [1, 2, 3]); } { let p: &mut (i32, i32, i32) = p.as_mut(); assert_eq!(p, &mut (1, 2, 3)); } } #[test] fn test_from() { assert_eq!(Point3::from([1, 2, 3]), POINT3); { let p = &[1, 2, 3]; let p: &Point3<_> = From::from(p); assert_eq!(p, &POINT3); } { let p = &mut [1, 2, 3]; let p: &mut Point3<_> = From::from(p); assert_eq!(p, &POINT3); } assert_eq!(Point3::from((1, 2, 3)), POINT3); { let p = &(1, 2, 3); let p: &Point3<_> = From::from(p); assert_eq!(p, &POINT3); } { let p = &mut (1, 2, 3); let p: &mut Point3<_> = From::from(p); assert_eq!(p, &POINT3); } } } }