use core::cast::transmute; use core::cmp::Eq; use core::ptr::to_unsafe_ptr; use core::vec::raw::buf_as_slice; use std::cmp::FuzzyEq; use funs::common::*; use funs::exponential::*; use num::types::{Float, Number}; use vec::Vec2; /** * A 2 x 2 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ pub struct Mat2 { x: Vec2, y: Vec2 } pub impl Mat2 { /** * Construct a 2 x 2 matrix * * # Arguments * * * `c0r0`, `c0r1` - the first column of the matrix * * `c1r0`, `c1r1` - the second column of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0r0 | c1r0 | * +------+------+ * r1 | c0r1 | c1r1 | * +------+------+ * ~~~ */ #[inline(always)] static pure fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { Mat2::from_cols(Vec2::new(move c0r0, move c0r1), Vec2::new(move c1r0, move c1r1)) } /** * Construct a 2 x 2 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0.x | c1.x | * +------+------+ * r1 | c0.y | c1.y | * +------+------+ * ~~~ */ #[inline(always)] static pure fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: move c0, y: move c1 } } /** * Construct a 2 x 2 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 * +-----+-----+ * r0 | val | 0 | * +-----+-----+ * r1 | 0 | val | * +-----+-----+ * ~~~ */ #[inline(always)] static pure fn from_value(value: T) -> Mat2 { let _0 = Number::from(0); Mat2::new(value, _0, _0, value) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn identity() -> Mat2 { let _0 = Number::from(0); let _1 = Number::from(1); Mat2::new(_1, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn zero() -> Mat2 { let _0 = Number::from(0); Mat2::new(_0, _0, _0, _0) } } pub impl Mat2: Matrix> { #[inline(always)] pure fn col(&self, i: uint) -> Vec2 { self[i] } #[inline(always)] pure fn row(&self, i: uint) -> Vec2 { Vec2::new(self[0][i], self[1][i]) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 1 | 0 | * +----+----+ * r1 | 0 | 1 | * +----+----+ * ~~~ */ #[inline(always)] static pure fn identity() -> Mat2 { let _0 = Number::from(0); let _1 = Number::from(1); Mat2::new(_1, _0, _0, _1) } /** * Returns the additive identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 0 | 0 | * +----+----+ * r1 | 0 | 0 | * +----+----+ * ~~~ */ #[inline(always)] static pure fn zero() -> Mat2 { let _0 = Number::from(0); Mat2::new(_0, _0, _0, _0) } #[inline(always)] pure fn mul_t(&self, value: T) -> Mat2 { Mat2::from_cols(self[0].mul_t(value), self[1].mul_t(value)) } #[inline(always)] pure fn mul_v(&self, vec: &Vec2) -> Vec2 { Vec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline(always)] pure fn add_m(&self, other: &Mat2) -> Mat2 { Mat2::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1])) } #[inline(always)] pure fn sub_m(&self, other: &Mat2) -> Mat2 { Mat2::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1])) } #[inline(always)] pure fn mul_m(&self, other: &Mat2) -> Mat2 { Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1))) } pure fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } pure fn determinant(&self) -> T { self[0][0] * self[1][1] - self[1][0] * self[0][1] } pure fn trace(&self) -> T { self[0][0] + self[1][1] } #[inline(always)] pure fn inverse(&self) -> Option> { let d = self.determinant(); if d.fuzzy_eq(&Number::from(0)) { None } else { Some(Mat2::new( self[1][1]/d, -self[0][1]/d, -self[1][0]/d, self[0][0]/d)) } } #[inline(always)] pure fn transpose(&self) -> Mat2 { Mat2::new(self[0][0], self[1][0], self[0][1], self[1][1]) } #[inline(always)] pure fn is_identity(&self) -> bool { // self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! self.fuzzy_eq(&Mat2::identity()) } #[inline(always)] pure fn is_diagonal(&self) -> bool { let _0 = Number::from(0); self[0][1].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated(&self) -> bool { // !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! !self.fuzzy_eq(&Mat2::identity()) } #[inline(always)] pure fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[1][0].fuzzy_eq(&self[0][1]) } #[inline(always)] pure fn is_invertible(&self) -> bool { !self.determinant().fuzzy_eq(&Number::from(0)) } #[inline(always)] pure fn to_ptr(&self) -> *T { unsafe { transmute::<*Mat2, *T>( to_unsafe_ptr(self) ) } } } pub impl Mat2: MutableMatrix> { #[inline(always)] fn col_mut(&mut self, i: uint) -> &self/mut Vec2 { match i { 0 => &mut self.x, 1 => &mut self.y, _ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { util::swap(self.col_mut(a), self.col_mut(b)); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat2) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = Mat2::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = Mat2::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(&value); self.col_mut(1).mul_self_t(&value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat2) { self.col_mut(0).add_self_v(&other[0]); self.col_mut(1).add_self_v(&other[1]); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat2) { self.col_mut(0).sub_self_v(&other[0]); self.col_mut(1).sub_self_v(&other[1]); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0)); util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1)); } } pub impl Mat2: Matrix2> { #[inline(always)] pure fn to_mat3(&self) -> Mat3 { let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new(self[0][0], self[0][1], _0, self[1][0], self[1][1], _0, _0, _0, _1) } #[inline(always)] pure fn to_mat4(&self) -> Mat4 { let _0 = Number::from(0); let _1 = Number::from(1); Mat4::new(self[0][0], self[0][1], _0, _0, self[1][0], self[1][1], _0, _0, _0, _0, _1, _0, _0, _0, _0, _1) } } pub impl Mat2: Index> { #[inline(always)] pure fn index(&self, i: uint) -> Vec2 { unsafe { do buf_as_slice( transmute::<*Mat2, *Vec2>( to_unsafe_ptr(self)), 2) |slice| { slice[i] } } } } pub impl Mat2: Neg> { #[inline(always)] pure fn neg(&self) -> Mat2 { Mat2::from_cols(-self[0], -self[1]) } } pub impl Mat2: Eq { #[inline(always)] pure fn eq(&self, other: &Mat2) -> bool { self[0] == other[0] && self[1] == other[1] } #[inline(always)] pure fn ne(&self, other: &Mat2) -> bool { !(self == other) } } pub impl Mat2: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat2) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) } }