use cast::transmute; use cmp::Eq; use num::from_int; use ptr::to_unsafe_ptr; use vec::raw::buf_as_slice; use std::cmp::FuzzyEq; use math::*; use ncast::*; use quaternion::{Quat, ToQuat}; use vector::{Vec2, Vec3, Vec4}; // // NxN Matrix // pub trait Matrix { pure fn rows() -> uint; pure fn cols() -> uint; pure fn is_col_major() -> bool; pure fn col(i: uint) -> V; pure fn row(i: uint) -> V; pure fn mul_t(value: T) -> self; pure fn mul_v(other: &V) -> V; pure fn add_m(other: &self) -> self; pure fn sub_m(other: &self) -> self; pure fn mul_m(other: &self) -> self; // pure fn invert(other: &self) -> self; pure fn transpose() -> self; pure fn is_identity() -> bool; pure fn is_symmetric() -> bool; pure fn is_diagonal() -> bool; pure fn is_rotated() -> bool; } // // 2x2 Matrix // pub trait Matrix2 { pure fn to_Mat3() -> Mat3; pure fn to_Mat4() -> Mat4; } // // 3x3 Matrix // pub trait Matrix3 { pure fn to_Mat4() -> Mat4; } // // 4x4 Matrix // pub trait Matrix4 { } // // Mat2: A 2x2, column major matrix // pub struct Mat2 { x: Vec2, y: Vec2 } pub mod Mat2 { #[inline(always)] pub pure fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { Mat2::from_cols(Vec2::new(move c0r0, move c0r1), Vec2::new(move c1r0, move c1r1)) } #[inline(always)] pub pure fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: move c0, y: move c1 } } #[inline(always)] pub pure fn from_value(value: T) -> Mat2 { let _0 = cast(0); Mat2::new(value, _0, _0, value) } #[inline(always)] pub pure fn zero() -> Mat2 { let _0 = cast(0); Mat2::new(_0, _0, _0, _0) } #[inline(always)] pub pure fn identity() -> Mat2 { let _0 = cast(0); let _1 = cast(1); Mat2::new(_1, _0, _0, _1) } } pub impl Mat2: Matrix> { #[inline(always)] pure fn rows() -> uint { 2 } #[inline(always)] pure fn cols() -> uint { 2 } #[inline(always)] pure fn is_col_major() -> bool { true } #[inline(always)] pure fn col(i: uint) -> Vec2 { self[i] } #[inline(always)] pure fn row(i: uint) -> Vec2 { Vec2::new(self[0][i], self[1][i]) } #[inline(always)] pure fn mul_t(value: T) -> Mat2 { Mat2::from_cols(self[0].mul_t(value), self[1].mul_t(value)) } #[inline(always)] pure fn mul_v(other: &Vec2) -> Vec2 { Vec2::new(self[0][0] * other[0] + self[1][0] * other[1], self[0][1] * other[0] + self[1][1] * other[1]) } #[inline(always)] pure fn add_m(other: &Mat2) -> Mat2 { Mat2::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1])) } #[inline(always)] pure fn sub_m(other: &Mat2) -> Mat2 { Mat2::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1])) } #[inline(always)] pure fn mul_m(other: &Mat2) -> Mat2 { Mat2::new(self[0][0] * other[0][0] + self[1][0] * other[0][1], self[0][1] * other[0][0] + self[1][1] * other[0][1], self[0][0] * other[1][0] + self[1][0] * other[1][1], self[0][1] * other[1][0] + self[1][1] * other[1][1]) } // TODO - inversion is harrrd D: // #[inline(always)] // pure fn invert(other: &Mat2) -> Mat2 {} #[inline(always)] pure fn transpose() -> Mat2 { Mat2::new(self[0][0], self[1][0], self[0][1], self[1][1]) } #[inline(always)] pure fn is_identity() -> bool { self.fuzzy_eq(&Mat2::identity()) } #[inline(always)] pure fn is_symmetric() -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[1][0].fuzzy_eq(&self[0][1]) } #[inline(always)] pure fn is_diagonal() -> bool { let _0 = cast(0); self[0][1].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated() -> bool { !self.fuzzy_eq(&Mat2::identity()) } } pub impl Mat2: Matrix2 { #[inline(always)] pure fn to_Mat3() -> Mat3 { Mat3::from_Mat2(&self) } #[inline(always)] pure fn to_Mat4() -> Mat4 { Mat4::from_Mat2(&self) } } pub impl Mat2: Index> { #[inline(always)] pure fn index(i: uint) -> Vec2 { unsafe { do buf_as_slice( transmute::<*Mat2, *Vec2>( to_unsafe_ptr(&self)), 2) |slice| { slice[i] } } } } pub impl> Mat2: Neg> { #[inline(always)] pure fn neg() -> Mat2 { Mat2::from_cols(-self[0], -self[1]) } } // TODO: make work for T:Integer pub impl Mat2: Eq { #[inline(always)] pure fn eq(other: &Mat2) -> bool { self.fuzzy_eq(other) } #[inline(always)] pure fn ne(other: &Mat2) -> bool { !(self == *other) } } impl Mat2: ExactEq { #[inline(always)] pure fn exact_eq(other: &Mat2) -> bool { self[0].exact_eq(&other[0]) && self[1].exact_eq(&other[1]) } } pub impl Mat2: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat2) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) } } // // Mat3: A 3x3, column major matrix // pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } pub mod Mat3 { #[inline(always)] pub pure fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Mat3 { Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2), Vec3::new(move c1r0, move c1r1, move c1r2), Vec3::new(move c2r0, move c2r1, move c2r2)) } #[inline(always)] pub pure fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { Mat3 { x: move c0, y: move c1, z: move c2 } } #[inline(always)] pub pure fn from_value(value: T) -> Mat3 { let _0 = cast(0); Mat3::new(value, _0, _0, _0, value, _0, _0, _0, value) } #[inline(always)] pub pure fn from_Mat2(m: &Mat2) -> Mat3 { let _0 = cast(0); let _1 = cast(1); Mat3::new(m[0][0], m[0][1], _0, m[1][0], m[1][1], _0, _0, _0, _1) } #[inline(always)] pub pure fn zero() -> Mat3 { let _0 = cast(0); Mat3::new(_0, _0, _0, _0, _0, _0, _0, _0, _0) } #[inline(always)] pub pure fn identity() -> Mat3 { let _0 = cast(0); let _1 = cast(1); Mat3::new(_1, _0, _0, _0, _1, _0, _0, _0, _1) } } pub impl Mat3: Matrix> { #[inline(always)] pure fn rows() -> uint { 3 } #[inline(always)] pure fn cols() -> uint { 3 } #[inline(always)] pure fn is_col_major() -> bool { true } #[inline(always)] pure fn col(i: uint) -> Vec3 { self[i] } #[inline(always)] pure fn row(i: uint) -> Vec3 { Vec3::new(self[0][i], self[1][i], self[2][i]) } #[inline(always)] pure fn mul_t(value: T) -> Mat3 { Mat3::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value)) } #[inline(always)] pure fn mul_v(other: &Vec3) -> Vec3 { Vec3::new(self[0][0] * other[0] + self[1][0] * other[1] + self[2][0] * other[2], self[0][1] * other[0] + self[1][1] * other[1] + self[2][1] * other[2], self[0][2] * other[0] + self[1][2] * other[1] + self[2][2] * other[2]) } #[inline(always)] pure fn add_m(other: &Mat3) -> Mat3 { Mat3::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2])) } #[inline(always)] pure fn sub_m(other: &Mat3) -> Mat3 { Mat3::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2])) } #[inline(always)] pure fn mul_m(other: &Mat3) -> Mat3 { Mat3::new(self[0][0] * other[0][0] + self[1][0] * other[0][1] + self[2][0] * other[0][2], self[0][1] * other[0][0] + self[1][1] * other[0][1] + self[2][1] * other[0][2], self[0][2] * other[0][0] + self[1][2] * other[0][1] + self[2][2] * other[0][2], self[0][0] * other[1][0] + self[1][0] * other[1][1] + self[2][0] * other[1][2], self[0][1] * other[1][0] + self[1][1] * other[1][1] + self[2][1] * other[1][2], self[0][2] * other[1][0] + self[1][2] * other[1][1] + self[2][2] * other[1][2], self[0][0] * other[2][0] + self[1][0] * other[2][1] + self[2][0] * other[2][2], self[0][1] * other[2][0] + self[1][1] * other[2][1] + self[2][1] * other[2][2], self[0][2] * other[2][0] + self[1][2] * other[2][1] + self[2][2] * other[2][2]) } // TODO - inversion is harrrd D: // #[inline(always)] // pure fn invert(other: &Mat3) -> Mat3 {} #[inline(always)] pure fn transpose() -> Mat3 { Mat3::new(self[0][0], self[1][0], self[2][0], self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2]) } #[inline(always)] pure fn is_identity() -> bool { self.fuzzy_eq(&Mat3::identity()) } #[inline(always)] pure fn is_symmetric() -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) } #[inline(always)] pure fn is_diagonal() -> bool { let _0 = cast(0); self[0][1].fuzzy_eq(&_0) && self[0][2].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) && self[1][2].fuzzy_eq(&_0) && self[2][0].fuzzy_eq(&_0) && self[2][1].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated() -> bool { !self.fuzzy_eq(&Mat3::identity()) } } pub impl Mat3: Matrix3 { #[inline(always)] pure fn to_Mat4() -> Mat4 { Mat4::from_Mat3(&self) } } pub impl Mat3: ToQuat { pure fn to_Quat() -> Quat { // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf let mut s: float; let w: float, x: float, y: float, z: float; let trace: float = cast(self[0][0] + self[1][1] + self[2][2]); if trace >= from_int(0) { s = (trace + 1f).sqrt(); w = 0.5 * s; s = 0.5 / s; x = (self[1][2] - self[2][1]).cast::() * s; y = (self[2][0] - self[0][2]).cast::() * s; z = (self[0][1] - self[1][0]).cast::() * s; } else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) { s = (1f + (self[0][0] - self[1][1] - self[2][2]).cast::()).sqrt(); w = 0.5 * s; s = 0.5 / s; x = (self[0][1] - self[1][0]).cast::() * s; y = (self[2][0] - self[0][2]).cast::() * s; z = (self[1][2] - self[2][1]).cast::() * s; } else if self[1][1] > self[2][2] { s = (1f + (self[1][1] - self[0][0] - self[2][2]).cast::()).sqrt(); w = 0.5 * s; s = 0.5 / s; x = (self[0][1] - self[1][0]).cast::() * s; y = (self[1][2] - self[2][1]).cast::() * s; z = (self[2][0] - self[0][2]).cast::() * s; } else { s = (1f + (self[2][2] - self[0][0] - self[1][1]).cast::()).sqrt(); w = 0.5 * s; s = 0.5 / s; x = (self[2][0] - self[0][2]).cast::() * s; y = (self[1][2] - self[2][1]).cast::() * s; z = (self[0][1] - self[1][0]).cast::() * s; } Quat::new(cast(w), cast(x), cast(y), cast(z)) } } pub impl Mat3: Index> { #[inline(always)] pure fn index(i: uint) -> Vec3 { unsafe { do buf_as_slice( transmute::<*Mat3, *Vec3>( to_unsafe_ptr(&self)), 3) |slice| { slice[i] } } } } pub impl> Mat3: Neg> { #[inline(always)] pure fn neg() -> Mat3 { Mat3::from_cols(-self[0], -self[1], -self[2]) } } // TODO: make work for T:Integer pub impl Mat3: Eq { #[inline(always)] pure fn eq(other: &Mat3) -> bool { self.fuzzy_eq(other) } #[inline(always)] pure fn ne(other: &Mat3) -> bool { !(self == *other) } } pub impl Mat3: ExactEq { #[inline(always)] pure fn exact_eq(other: &Mat3) -> bool { self[0].exact_eq(&other[0]) && self[1].exact_eq(&other[1]) && self[2].exact_eq(&other[2]) } } pub impl Mat3: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat3) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) } } pub impl Mat3: ToPtr { #[inline(always)] pure fn to_ptr() -> *T { self[0].to_ptr() } } // // Mat4: A 4x4, column major matrix // pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4 } pub mod Mat4 { #[inline(always)] pub pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3), Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3), Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3), Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3)) } #[inline(always)] pub pure fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { Mat4 { x: move c0, y: move c1, z: move c2, w: move c3 } } #[inline(always)] pub pure fn from_value(value: T) -> Mat4 { let _0 = cast(0); Mat4::new(value, _0, _0, _0, _0, value, _0, _0, _0, _0, value, _0, _0, _0, _0, value) } #[inline(always)] pub pure fn from_Mat2(m: &Mat2) -> Mat4 { let _0 = cast(0); let _1 = cast(1); Mat4::new(m[0][0], m[0][1], _0, _0, m[1][0], m[1][1], _0, _0, _0, _0, _1, _0, _0, _0, _0, _1) } #[inline(always)] pub pure fn from_Mat3(m: &Mat3) -> Mat4 { let _0 = cast(0); let _1 = cast(1); Mat4::new(m[0][0], m[0][1], m[0][2], _0, m[1][0], m[1][1], m[1][2], _0, m[2][0], m[2][1], m[2][2], _0, _0, _0, _0, _1) } #[inline(always)] pub pure fn zero() -> Mat4 { let _0 = cast(0); Mat4::new(_0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0) } #[inline(always)] pub pure fn identity() -> Mat4 { let _0 = cast(0); let _1 = cast(1); Mat4::new(_1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1) } } pub impl Mat4: Matrix> { #[inline(always)] pure fn rows() -> uint { 4 } #[inline(always)] pure fn cols() -> uint { 4 } #[inline(always)] pure fn is_col_major() -> bool { true } #[inline(always)] pure fn col(i: uint) -> Vec4 { self[i] } #[inline(always)] pure fn row(i: uint) -> Vec4 { Vec4::new(self[0][i], self[1][i], self[2][i], self[3][i]) } #[inline(always)] pure fn mul_t(value: T) -> Mat4 { Mat4::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value), self[3].mul_t(value)) } #[inline(always)] pure fn mul_v(other: &Vec4) -> Vec4 { Vec4::new(self[0][0] * other[0] + self[1][0] * other[1] + self[2][0] * other[2] + self[3][0] * other[3], self[0][1] * other[0] + self[1][1] * other[1] + self[2][1] * other[2] + self[3][1] * other[3], self[0][2] * other[0] + self[1][2] * other[1] + self[2][2] * other[2] + self[3][2] * other[3], self[0][3] * other[0] + self[1][3] * other[1] + self[2][3] * other[2] + self[3][3] * other[3]) } #[inline(always)] pure fn add_m(other: &Mat4) -> Mat4 { Mat4::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2]), self[3].add_v(&other[3])) } #[inline(always)] pure fn sub_m(other: &Mat4) -> Mat4 { Mat4::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2]), self[3].sub_v(&other[3])) } #[inline(always)] pure fn mul_m(other: &Mat4) -> Mat4 { Mat4::new(self[0][0] * other[0][0] + self[1][0] * other[0][1] + self[2][0] * other[0][2] + self[3][0] * other[0][3], self[0][1] * other[0][0] + self[1][1] * other[0][1] + self[2][1] * other[0][2] + self[3][1] * other[0][3], self[0][2] * other[0][0] + self[1][2] * other[0][1] + self[2][2] * other[0][2] + self[3][2] * other[0][3], self[0][3] * other[0][0] + self[1][3] * other[0][1] + self[2][3] * other[0][2] + self[3][3] * other[0][3], self[0][0] * other[1][0] + self[1][0] * other[1][1] + self[2][0] * other[1][2] + self[3][0] * other[1][3], self[0][1] * other[1][0] + self[1][1] * other[1][1] + self[2][1] * other[1][2] + self[3][1] * other[1][3], self[0][2] * other[1][0] + self[1][2] * other[1][1] + self[2][2] * other[1][2] + self[3][2] * other[1][3], self[0][3] * other[1][0] + self[1][3] * other[1][1] + self[2][3] * other[1][2] + self[3][3] * other[1][3], self[0][0] * other[2][0] + self[1][0] * other[2][1] + self[2][0] * other[2][2] + self[3][0] * other[2][3], self[0][1] * other[2][0] + self[1][1] * other[2][1] + self[2][1] * other[2][2] + self[3][1] * other[2][3], self[0][2] * other[2][0] + self[1][2] * other[2][1] + self[2][2] * other[2][2] + self[3][2] * other[2][3], self[0][3] * other[2][0] + self[1][3] * other[2][1] + self[2][3] * other[2][2] + self[3][3] * other[2][3], self[0][0] * other[3][0] + self[1][0] * other[3][1] + self[2][0] * other[3][2] + self[3][0] * other[3][3], self[0][1] * other[3][0] + self[1][1] * other[3][1] + self[2][1] * other[3][2] + self[3][1] * other[3][3], self[0][2] * other[3][0] + self[1][2] * other[3][1] + self[2][2] * other[3][2] + self[3][2] * other[3][3], self[0][3] * other[3][0] + self[1][3] * other[3][1] + self[2][3] * other[3][2] + self[3][3] * other[3][3]) } // TODO - inversion is harrrd D: // #[inline(always)] // pure fn invert(other: &Mat4) -> Mat4 {} #[inline(always)] pure fn transpose() -> Mat4 { Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0], self[0][1], self[1][1], self[2][1], self[3][1], self[0][2], self[1][2], self[2][2], self[3][2], self[0][3], self[1][3], self[2][3], self[3][3]) } #[inline(always)] pure fn is_identity() -> bool { self.fuzzy_eq(&Mat4::identity()) } #[inline(always)] pure fn is_symmetric() -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[0][3].fuzzy_eq(&self[3][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[1][3].fuzzy_eq(&self[3][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) && self[2][3].fuzzy_eq(&self[3][2]) && self[3][0].fuzzy_eq(&self[0][3]) && self[3][1].fuzzy_eq(&self[1][3]) && self[3][2].fuzzy_eq(&self[2][3]) } #[inline(always)] pure fn is_diagonal() -> bool { let _0 = cast(0); self[0][1].fuzzy_eq(&_0) && self[0][2].fuzzy_eq(&_0) && self[0][3].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) && self[1][2].fuzzy_eq(&_0) && self[1][3].fuzzy_eq(&_0) && self[2][0].fuzzy_eq(&_0) && self[2][1].fuzzy_eq(&_0) && self[2][3].fuzzy_eq(&_0) && self[3][0].fuzzy_eq(&_0) && self[3][1].fuzzy_eq(&_0) && self[3][2].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated() -> bool { !self.fuzzy_eq(&Mat4::identity()) } } pub impl Mat4: Matrix4 { } pub impl Mat4: Index> { #[inline(always)] pure fn index(i: uint) -> Vec4 { unsafe { do buf_as_slice( transmute::<*Mat4, *Vec4>( to_unsafe_ptr(&self)), 4) |slice| { slice[i] } } } } pub impl> Mat4: Neg> { #[inline(always)] pure fn neg() -> Mat4 { Mat4::from_cols(-self[0], -self[1], -self[2], -self[3]) } } // TODO: make work for T:Integer pub impl Mat4: Eq { #[inline(always)] pure fn eq(other: &Mat4) -> bool { self.fuzzy_eq(other) } #[inline(always)] pure fn ne(other: &Mat4) -> bool { !(self == *other) } } pub impl Mat4: ExactEq { #[inline(always)] pure fn exact_eq(other: &Mat4) -> bool { self[0].exact_eq(&other[0]) && self[1].exact_eq(&other[1]) && self[2].exact_eq(&other[2]) && self[3].exact_eq(&other[3]) } } pub impl Mat4: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat4) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) && self[3].fuzzy_eq(&other[3]) } } pub impl Mat4: ToPtr { #[inline(always)] pure fn to_ptr() -> *T { self[0].to_ptr() } }