// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::cast::transmute; use std::cmp::ApproxEq; use std::num::{Zero, One}; use vec::*; use super::{Mat3, ToMat3}; use super::{Mat4, ToMat4}; #[deriving(Eq)] pub struct Mat2 { x: Vec2, y: Vec2, } pub trait ToMat2 { pub fn to_mat2(&self) -> Mat2; } impl Mat2 { /// Construct a 2 x 2 matrix /// /// # Arguments /// /// - `c0r0`, `c0r1`: the first column of the matrix /// - `c1r0`, `c1r1`: the second column of the matrix /// /// ~~~ /// c0 c1 /// +------+------+ /// r0 | c0r0 | c1r0 | /// +------+------+ /// r1 | c0r1 | c1r1 | /// +------+------+ /// ~~~ #[inline] pub fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { Mat2::from_cols(Vec2::new(c0r0, c0r1), Vec2::new(c1r0, c1r1)) } /// Construct a 2 x 2 matrix from column vectors /// /// # Arguments /// /// - `c0`: the first column vector of the matrix /// - `c1`: the second column vector of the matrix /// /// ~~~ /// c0 c1 /// +------+------+ /// r0 | c0.x | c1.x | /// +------+------+ /// r1 | c0.y | c1.y | /// +------+------+ /// ~~~ #[inline] pub fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: c0, y: c1 } } #[inline] pub fn col<'a>(&'a self, i: uint) -> &'a Vec2 { &'a self.as_slice()[i] } #[inline] pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2 { &'a mut self.as_mut_slice()[i] } #[inline] pub fn as_slice<'a>(&'a self) -> &'a [Vec2,..2] { unsafe { transmute(self) } } #[inline] pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec2,..2] { unsafe { transmute(self) } } #[inline] pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T { self.col(i).index(j) } #[inline] pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T { self.col_mut(i).index_mut(j) } #[inline(always)] pub fn map(&self, f: &fn(&Vec2) -> Vec2) -> Mat2 { Mat2::from_cols(f(self.col(0)), f(self.col(1))) } } impl Mat2 { #[inline] pub fn row(&self, i: uint) -> Vec2 { Vec2::new(*self.elem(0, i), *self.elem(1, i)) } #[inline] pub fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline] pub fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline] pub fn transpose(&self) -> Mat2 { Mat2::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(0, 1), *self.elem(1, 1)) } #[inline] pub fn transpose_self(&mut self) { let tmp01 = *self.elem(0, 1); let tmp10 = *self.elem(1, 0); *self.elem_mut(0, 1) = *self.elem(1, 0); *self.elem_mut(1, 0) = *self.elem(0, 1); *self.elem_mut(1, 0) = tmp01; *self.elem_mut(0, 1) = tmp10; } } impl Mat2 { /// Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`. /// ~~~ /// c0 c1 /// +-----+-----+ /// r0 | val | 0 | /// +-----+-----+ /// r1 | 0 | val | /// +-----+-----+ /// ~~~ #[inline] pub fn from_value(value: T) -> Mat2 { Mat2::new(value, Zero::zero(), Zero::zero(), value) } /// Returns the multiplicative identity matrix /// ~~~ /// c0 c1 /// +----+----+ /// r0 | 1 | 0 | /// +----+----+ /// r1 | 0 | 1 | /// +----+----+ /// ~~~ #[inline] pub fn identity() -> Mat2 { Mat2::new(One::one::(), Zero::zero::(), Zero::zero::(), One::one::()) } /// Returns the additive identity matrix /// ~~~ /// c0 c1 /// +----+----+ /// r0 | 0 | 0 | /// +----+----+ /// r1 | 0 | 0 | /// +----+----+ /// ~~~ #[inline] pub fn zero() -> Mat2 { Mat2::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline] pub fn mul_t(&self, value: T) -> Mat2 { Mat2::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value)) } #[inline] pub fn mul_v(&self, vec: &Vec2) -> Vec2 { Vec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline] pub fn add_m(&self, other: &Mat2) -> Mat2 { Mat2::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1))) } #[inline] pub fn sub_m(&self, other: &Mat2) -> Mat2 { Mat2::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1))) } #[inline] pub fn mul_m(&self, other: &Mat2) -> Mat2 { Mat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1))) } #[inline] pub fn mul_self_t(&mut self, value: T) { self.x.mul_self_t(value); self.y.mul_self_t(value); } #[inline] pub fn add_self_m(&mut self, other: &Mat2) { self.x.add_self_v(other.col(0)); self.y.add_self_v(other.col(1)); } #[inline] pub fn sub_self_m(&mut self, other: &Mat2) { self.x.sub_self_v(other.col(0)); self.y.sub_self_v(other.col(1)); } pub fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } pub fn determinant(&self) -> T { *self.col(0).index(0) * *self.col(1).index(1) - *self.col(1).index(0) * *self.col(0).index(1) } pub fn trace(&self) -> T { *self.col(0).index(0) + *self.col(1).index(1) } #[inline] pub fn to_identity(&mut self) { *self = Mat2::identity(); } #[inline] pub fn to_zero(&mut self) { *self = Mat2::zero(); } } impl ToMat3 for Mat2 { /// Returns the the matrix with an extra row and column added /// ~~~ /// c0 c1 c0 c1 c2 /// +----+----+ +----+----+----+ /// r0 | a | b | r0 | a | b | 0 | /// +----+----+ +----+----+----+ /// r1 | c | d | => r1 | c | d | 0 | /// +----+----+ +----+----+----+ /// r2 | 0 | 0 | 1 | /// +----+----+----+ /// ~~~ #[inline] pub fn to_mat3(&self) -> Mat3 { Mat3::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } } impl ToMat4 for Mat2 { /// Returns the the matrix with an extra two rows and columns added /// ~~~ /// c0 c1 c0 c1 c2 c3 /// +----+----+ +----+----+----+----+ /// r0 | a | b | r0 | a | b | 0 | 0 | /// +----+----+ +----+----+----+----+ /// r1 | c | d | => r1 | c | d | 0 | 0 | /// +----+----+ +----+----+----+----+ /// r2 | 0 | 0 | 1 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 1 | /// +----+----+----+----+ /// ~~~ #[inline] pub fn to_mat4(&self) -> Mat4 { Mat4::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one(), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } } impl Neg> for Mat2 { #[inline] pub fn neg(&self) -> Mat2 { Mat2::from_cols(-self.col(0), -self.col(1)) } } impl Mat2 { #[inline] pub fn from_angle(radians: T) -> Mat2 { let cos_theta = radians.cos(); let sin_theta = radians.sin(); Mat2::new(cos_theta, -sin_theta, sin_theta, cos_theta) } } impl> Mat2 { #[inline] pub fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { Some(Mat2::new(self.elem(1, 1) / d, -self.elem(0, 1) / d, -self.elem(1, 0) / d, self.elem(0, 0) / d)) } } #[inline] pub fn invert_self(&mut self) { *self = self.inverse().expect("Couldn't invert the matrix!"); } #[inline] pub fn is_identity(&self) -> bool { self.approx_eq(&Mat2::identity()) } #[inline] pub fn is_diagonal(&self) -> bool { self.elem(0, 1).approx_eq(&Zero::zero()) && self.elem(1, 0).approx_eq(&Zero::zero()) } #[inline] pub fn is_rotated(&self) -> bool { !self.approx_eq(&Mat2::identity()) } #[inline] pub fn is_symmetric(&self) -> bool { self.elem(0, 1).approx_eq(self.elem(1, 0)) && self.elem(1, 0).approx_eq(self.elem(0, 1)) } #[inline] pub fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } } impl> ApproxEq for Mat2 { #[inline] pub fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline] pub fn approx_eq(&self, other: &Mat2) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline] pub fn approx_eq_eps(&self, other: &Mat2, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) } } #[cfg(test)] mod tests{ use mat::*; use vec::*; #[test] fn test_mat2() { let a = Mat2 { x: Vec2 { x: 1.0, y: 3.0 }, y: Vec2 { x: 2.0, y: 4.0 } }; let b = Mat2 { x: Vec2 { x: 2.0, y: 4.0 }, y: Vec2 { x: 3.0, y: 5.0 } }; let v1 = Vec2::new::(1.0, 2.0); let f1 = 0.5; assert_eq!(a, Mat2::new::(1.0, 3.0, 2.0, 4.0)); assert_eq!(a, Mat2::from_cols::(Vec2::new::(1.0, 3.0), Vec2::new::(2.0, 4.0))); assert_eq!(Mat2::from_value::(4.0), Mat2::new::(4.0, 0.0, 0.0, 4.0)); assert_eq!(*a.col(0), Vec2::new::(1.0, 3.0)); assert_eq!(*a.col(1), Vec2::new::(2.0, 4.0)); assert_eq!(a.row(0), Vec2::new::(1.0, 2.0)); assert_eq!(a.row(1), Vec2::new::(3.0, 4.0)); assert_eq!(*a.col(0), Vec2::new::(1.0, 3.0)); assert_eq!(*a.col(1), Vec2::new::(2.0, 4.0)); assert_eq!(Mat2::identity::(), Mat2::new::(1.0, 0.0, 0.0, 1.0)); assert_eq!(Mat2::zero::(), Mat2::new::(0.0, 0.0, 0.0, 0.0)); assert_eq!(a.determinant(), -2.0); assert_eq!(a.trace(), 5.0); assert_eq!(a.neg(), Mat2::new::(-1.0, -3.0, -2.0, -4.0)); assert_eq!(-a, a.neg()); assert_eq!(a.mul_t(f1), Mat2::new::(0.5, 1.5, 1.0, 2.0)); assert_eq!(a.mul_v(&v1), Vec2::new::(5.0, 11.0)); assert_eq!(a.add_m(&b), Mat2::new::(3.0, 7.0, 5.0, 9.0)); assert_eq!(a.sub_m(&b), Mat2::new::(-1.0, -1.0, -1.0, -1.0)); assert_eq!(a.mul_m(&b), Mat2::new::(10.0, 22.0, 13.0, 29.0)); assert_eq!(a.dot(&b), 40.0); assert_eq!(a.transpose(), Mat2::new::(1.0, 2.0, 3.0, 4.0)); assert_eq!(a.inverse().unwrap(), Mat2::new::(-2.0, 1.5, 1.0, -0.5)); assert!(Mat2::new::(0.0, 2.0, 0.0, 5.0).inverse().is_none()); let ident = Mat2::identity::(); assert!(ident.is_identity()); assert!(ident.is_symmetric()); assert!(ident.is_diagonal()); assert!(!ident.is_rotated()); assert!(ident.is_invertible()); assert!(!a.is_identity()); assert!(!a.is_symmetric()); assert!(!a.is_diagonal()); assert!(a.is_rotated()); assert!(a.is_invertible()); let c = Mat2::new::(2.0, 1.0, 1.0, 2.0); assert!(!c.is_identity()); assert!(c.is_symmetric()); assert!(!c.is_diagonal()); assert!(c.is_rotated()); assert!(c.is_invertible()); assert!(Mat2::from_value::(6.0).is_diagonal()); assert_eq!(a.to_mat3(), Mat3::new::(1.0, 3.0, 0.0, 2.0, 4.0, 0.0, 0.0, 0.0, 1.0)); assert_eq!(a.to_mat4(), Mat4::new::(1.0, 3.0, 0.0, 0.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0)); } fn test_mat2_mut() { let a = Mat2 { x: Vec2 { x: 1.0, y: 3.0 }, y: Vec2 { x: 2.0, y: 4.0 } }; let b = Mat2 { x: Vec2 { x: 2.0, y: 4.0 }, y: Vec2 { x: 3.0, y: 5.0 } }; let f1 = 0.5; let mut mut_a = a; mut_a.swap_cols(0, 1); assert_eq!(mut_a.col(0), a.col(1)); assert_eq!(mut_a.col(1), a.col(0)); mut_a = a; mut_a.swap_rows(0, 1); assert_eq!(mut_a.row(0), a.row(1)); assert_eq!(mut_a.row(1), a.row(0)); mut_a = a; mut_a.to_identity(); assert!(mut_a.is_identity()); mut_a = a; mut_a.to_zero(); assert_eq!(mut_a, Mat2::zero::()); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.add_self_m(&b); assert_eq!(mut_a, a.add_m(&b)); mut_a = a; mut_a.sub_self_m(&b); assert_eq!(mut_a, a.sub_m(&b)); mut_a = a; mut_a.invert_self(); assert_eq!(mut_a, a.inverse().unwrap()); mut_a = a; mut_a.transpose_self(); assert_eq!(mut_a, a.transpose()); // mut_a = a; } #[test] fn test_mat2_approx_eq() { assert!(!Mat2::new::(0.000001, 0.000001, 0.000001, 0.000001).approx_eq(&Mat2::zero::())); assert!(Mat2::new::(0.0000001, 0.0000001, 0.0000001, 0.0000001).approx_eq(&Mat2::zero::())); } }