use core::cast::transmute; use core::cmp::{Eq, Ord}; use core::ptr::to_unsafe_ptr; use core::sys::size_of; use core::vec::raw::buf_as_slice; use std::cmp::FuzzyEq; use dim::{Dimensional, ToPtr}; use funs::common::*; use funs::exponential::*; use num::conv::cast; use num::kinds::{Float, Number}; use quat::{Quat, ToQuat}; use vec::{NumericVector, Vec2, Vec3, Vec4}; /** * The base square matrix trait */ pub trait Matrix: Dimensional, ToPtr, Eq, Neg { /** * Returns the column vector at `i` */ pure fn col(&self, i: uint) -> V; /** * Returns the row vector at `i` */ pure fn row(&self, i: uint) -> V; /** * Returns the identity matrix */ static pure fn identity() -> self; /** * Returns a matrix with all elements set to zero */ static pure fn zero() -> self; /** * Returns the scalar multiplication of this matrix and `value` */ pure fn mul_t(&self, value: T) -> self; /** * Returns the matrix vector product of the matrix and `vec` */ pure fn mul_v(&self, vec: &V) -> V; /** * Ruturns the matrix addition of the matrix and `other` */ pure fn add_m(&self, other: &self) -> self; /** * Ruturns the difference between the matrix and `other` */ pure fn sub_m(&self, other: &self) -> self; /** * Returns the matrix product of the matrix and `other` */ pure fn mul_m(&self, other: &self) -> self; /** * Returns the matrix dot product of the matrix and `other` */ pure fn dot(&self, other: &self) -> T; /** * Returns the determinant of the matrix */ pure fn determinant(&self) -> T; /** * Returns the sum of the main diagonal of the matrix */ pure fn trace(&self) -> T; /** * Returns the inverse of the matrix * * # Return value * * - `Some(m)` if the inversion was successful, where `m` is the inverted matrix * - `None` if the inversion was unsuccessful (because the matrix was not invertable) */ pure fn inverse(&self) -> Option; /** * Returns the transpose of the matrix */ pure fn transpose(&self) -> self; /** * Returns `true` if the matrix is approximately equal to the * identity matrix */ pure fn is_identity(&self) -> bool; /** * Returns `true` all the elements outside the main diagonal are * approximately equal to zero. */ pure fn is_diagonal(&self) -> bool; /** * Returns `true` if the matrix is not approximately equal to the * identity matrix. */ pure fn is_rotated(&self) -> bool; /** * Returns `true` if the matrix is approximately symmetrical (ie, if the * matrix is equal to its transpose). */ pure fn is_symmetric(&self) -> bool; /** * Returns `true` if the matrix is invertable */ pure fn is_invertible(&self) -> bool; } /** * A mutable matrix */ pub trait MutableMatrix: Matrix { /** * Get a mutable reference to the column at `i` */ fn col_mut(&mut self, i: uint) -> &self/mut V; /** * Swap two columns of the matrix in place */ fn swap_cols(&mut self, a: uint, b: uint); /** * Swap two rows of the matrix in place */ fn swap_rows(&mut self, a: uint, b: uint); /** * Sets the matrix to the identity matrix */ fn to_identity(&mut self); /** * Sets each element of the matrix to zero */ fn to_zero(&mut self); } /** * A 2 x 2 matrix */ pub trait Matrix2: Matrix { pure fn to_mat3(&self) -> Mat3; pure fn to_mat4(&self) -> Mat4; } /** * A 3 x 3 matrix */ pub trait Matrix3: Matrix { pure fn to_mat4(&self) -> Mat4; } /** * A 4 x 4 matrix */ pub trait Matrix4: Matrix { } /** * A 2 x 2 column major matrix * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ pub struct Mat2 { x: Vec2, y: Vec2 } pub impl Mat2 { /** * Construct a 2 x 2 matrix * * # Arguments * * * `c0r0`, `c0r1` - the first column of the matrix * * `c1r0`, `c1r1` - the second column of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0r0 | c1r0 | * +------+------+ * r1 | c0r1 | c1r1 | * +------+------+ * ~~~ */ #[inline(always)] static pure fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { Mat2::from_cols(Vec2::new(move c0r0, move c0r1), Vec2::new(move c1r0, move c1r1)) } /** * Construct a 2 x 2 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0.x | c1.x | * +------+------+ * r1 | c0.y | c1.y | * +------+------+ * ~~~ */ #[inline(always)] static pure fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: move c0, y: move c1 } } /** * Construct a 2 x 2 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 * +-----+-----+ * r0 | val | 0 | * +-----+-----+ * r1 | 0 | val | * +-----+-----+ * ~~~ */ #[inline(always)] static pure fn from_value(value: T) -> Mat2 { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE Mat2::new(value, _0, _0, value) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn identity() -> Mat2 { let _0 = cast(0); let _1 = cast(1); // let _0 = Number::from(0); // FIXME: causes ICE // let _1 = Number::from(1); // FIXME: causes ICE Mat2::new(_1, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn zero() -> Mat2 { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE Mat2::new(_0, _0, _0, _0) } } pub impl Mat2: Matrix> { #[inline(always)] pure fn col(&self, i: uint) -> Vec2 { self[i] } #[inline(always)] pure fn row(&self, i: uint) -> Vec2 { Vec2::new(self[0][i], self[1][i]) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 1 | 0 | * +----+----+ * r1 | 0 | 1 | * +----+----+ * ~~~ */ #[inline(always)] static pure fn identity() -> Mat2 { let _0 = Number::from(0); let _1 = Number::from(1); Mat2::new(_1, _0, _0, _1) } /** * Returns the additive identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 0 | 0 | * +----+----+ * r1 | 0 | 0 | * +----+----+ * ~~~ */ #[inline(always)] static pure fn zero() -> Mat2 { let _0 = Number::from(0); Mat2::new(_0, _0, _0, _0) } #[inline(always)] pure fn mul_t(&self, value: T) -> Mat2 { Mat2::from_cols(self[0].mul_t(value), self[1].mul_t(value)) } #[inline(always)] pure fn mul_v(&self, vec: &Vec2) -> Vec2 { Vec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline(always)] pure fn add_m(&self, other: &Mat2) -> Mat2 { Mat2::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1])) } #[inline(always)] pure fn sub_m(&self, other: &Mat2) -> Mat2 { Mat2::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1])) } #[inline(always)] pure fn mul_m(&self, other: &Mat2) -> Mat2 { Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1))) } pure fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } pure fn determinant(&self) -> T { self[0][0] * self[1][1] - self[1][0] * self[0][1] } pure fn trace(&self) -> T { self[0][0] + self[1][1] } #[inline(always)] pure fn inverse(&self) -> Option> { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE let d = self.determinant(); if d.fuzzy_eq(&_0) { None } else { Some(Mat2::new( self[1][1]/d, -self[0][1]/d, -self[1][0]/d, self[0][0]/d)) } } #[inline(always)] pure fn transpose(&self) -> Mat2 { Mat2::new(self[0][0], self[1][0], self[0][1], self[1][1]) } #[inline(always)] pure fn is_identity(&self) -> bool { // self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! self.fuzzy_eq(&Mat2::identity()) } #[inline(always)] pure fn is_diagonal(&self) -> bool { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE self[0][1].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated(&self) -> bool { // !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! !self.fuzzy_eq(&Mat2::identity()) } #[inline(always)] pure fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[1][0].fuzzy_eq(&self[0][1]) } #[inline(always)] pure fn is_invertible(&self) -> bool { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE !self.determinant().fuzzy_eq(&_0) } } pub impl Mat2: MutableMatrix> { #[inline(always)] fn col_mut(&mut self, i: uint) -> &self/mut Vec2 { match i { 0 => &mut self.x, 1 => &mut self.y, _ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { util::swap(self.col_mut(a), self.col_mut(b)); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline(always)] fn to_identity(&mut self) { *self = Mat2::identity(); } #[inline(always)] fn to_zero(&mut self) { *self = Mat2::zero(); } } pub impl Mat2: Matrix2> { #[inline(always)] pure fn to_mat3(&self) -> Mat3 { Mat3::from_Mat2(self) } #[inline(always)] pure fn to_mat4(&self) -> Mat4 { Mat4::from_Mat2(self) } } pub impl Mat2: Dimensional> { #[inline(always)] static pure fn dim() -> uint { 2 } #[inline(always)] static pure fn size_of() -> uint { size_of::>() } } pub impl Mat2: Index> { #[inline(always)] pure fn index(i: uint) -> Vec2 { unsafe { do buf_as_slice( transmute::<*Mat2, *Vec2>( to_unsafe_ptr(&self)), 2) |slice| { slice[i] } } } } pub impl Mat2: ToPtr { #[inline(always)] pure fn to_ptr(&self) -> *T { unsafe { transmute::<*Mat2, *T>( to_unsafe_ptr(&*self) ) } } } pub impl Mat2: Neg> { #[inline(always)] pure fn neg(&self) -> Mat2 { Mat2::from_cols(-self[0], -self[1]) } } pub impl Mat2: Eq { #[inline(always)] pure fn eq(&self, other: &Mat2) -> bool { self[0] == other[0] && self[1] == other[1] } #[inline(always)] pure fn ne(&self, other: &Mat2) -> bool { !(self == other) } } pub impl Mat2: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat2) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) } } /** * A 3 x 3 column major matrix * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } pub impl Mat3 { /** * Construct a 3 x 3 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | * +------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | * +------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | * +------+------+------+ * ~~~ */ #[inline(always)] static pure fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Mat3 { Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2), Vec3::new(move c1r0, move c1r1, move c1r2), Vec3::new(move c2r0, move c2r1, move c2r2)) } /** * Construct a 3 x 3 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0.x | c1.y | c2.z | * +------+------+------+ * r1 | c0.x | c1.y | c2.z | * +------+------+------+ * r2 | c0.x | c1.y | c2.z | * +------+------+------+ * ~~~ */ #[inline(always)] static pure fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { Mat3 { x: move c0, y: move c1, z: move c2 } } /** * Construct a 3 x 3 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 * +-----+-----+-----+ * r0 | val | 0 | 0 | * +-----+-----+-----+ * r1 | 0 | val | 0 | * +-----+-----+-----+ * r2 | 0 | 0 | val | * +-----+-----+-----+ * ~~~ */ #[inline(always)] static pure fn from_value(value: T) -> Mat3 { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE Mat3::new(value, _0, _0, _0, value, _0, _0, _0, value) } #[inline(always)] static pure fn from_Mat2(m: &Mat2) -> Mat3 { let _0 = cast(0); let _1 = cast(1); // let _0 = Number::from(0); // FIXME: causes ICE // let _1 = Number::from(1); // FIXME: causes ICE Mat3::new(m[0][0], m[0][1], _0, m[1][0], m[1][1], _0, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn identity() -> Mat3 { let _0 = cast(0); let _1 = cast(1); Mat3::new(_1, _0, _0, _0, _1, _0, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn zero() -> Mat3 { let _0 = cast(0); Mat3::new(_0, _0, _0, _0, _0, _0, _0, _0, _0) } } pub impl Mat3: Matrix> { #[inline(always)] pure fn col(&self, i: uint) -> Vec3 { self[i] } #[inline(always)] pure fn row(&self, i: uint) -> Vec3 { Vec3::new(self[0][i], self[1][i], self[2][i]) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 1 | 0 | 0 | * +----+----+----+ * r1 | 0 | 1 | 0 | * +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] static pure fn identity() -> Mat3 { // let _0 = cast(0); // let _1 = cast(1); let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new(_1, _0, _0, _0, _1, _0, _0, _0, _1) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 0 | 0 | 0 | * +----+----+----+ * r1 | 0 | 0 | 0 | * +----+----+----+ * r2 | 0 | 0 | 0 | * +----+----+----+ * ~~~ */ #[inline(always)] static pure fn zero() -> Mat3 { let _0 = Number::from(0); Mat3::new(_0, _0, _0, _0, _0, _0, _0, _0, _0) } #[inline(always)] pure fn mul_t(&self, value: T) -> Mat3 { Mat3::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value)) } #[inline(always)] pure fn mul_v(&self, vec: &Vec3) -> Vec3 { Vec3::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec)) } #[inline(always)] pure fn add_m(&self, other: &Mat3) -> Mat3 { Mat3::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2])) } #[inline(always)] pure fn sub_m(&self, other: &Mat3) -> Mat3 { Mat3::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2])) } #[inline(always)] pure fn mul_m(&self, other: &Mat3) -> Mat3 { Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2))) } pure fn dot(&self, other: &Mat3) -> T { other.transpose().mul_m(self).trace() } pure fn determinant(&self) -> T { self.col(0).dot(&self.col(1).cross(&self.col(2))) } pure fn trace(&self) -> T { self[0][0] + self[1][1] + self[2][2] } // #[inline(always)] pure fn inverse(&self) -> Option> { let d = self.determinant(); let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE if d.fuzzy_eq(&_0) { None } else { Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d), self[2].cross(&self[0]).div_t(d), self[0].cross(&self[1]).div_t(d)) .transpose()) } } #[inline(always)] pure fn transpose(&self) -> Mat3 { Mat3::new(self[0][0], self[1][0], self[2][0], self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2]) } #[inline(always)] pure fn is_identity(&self) -> bool { // self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! self.fuzzy_eq(&Mat3::identity()) } #[inline(always)] pure fn is_diagonal(&self) -> bool { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE self[0][1].fuzzy_eq(&_0) && self[0][2].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) && self[1][2].fuzzy_eq(&_0) && self[2][0].fuzzy_eq(&_0) && self[2][1].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated(&self) -> bool { // !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! !self.fuzzy_eq(&Mat3::identity()) } #[inline(always)] pure fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) } #[inline(always)] pure fn is_invertible(&self) -> bool { let _0 = cast(0); // let _0 = Number::from(0); // FIXME: causes ICE !self.determinant().fuzzy_eq(&_0) } } pub impl Mat3: MutableMatrix> { #[inline(always)] fn col_mut(&mut self, i: uint) -> &self/mut Vec3 { match i { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, _ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { util::swap(self.col_mut(a), self.col_mut(b)); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); } #[inline(always)] fn to_identity(&mut self) { *self = Mat3::identity(); } #[inline(always)] fn to_zero(&mut self) { *self = Mat3::zero(); } } pub impl Mat3: Matrix3> { #[inline(always)] pure fn to_mat4(&self) -> Mat4 { Mat4::from_Mat3(self) } } pub impl Mat3: ToQuat { pure fn to_Quat() -> Quat { // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf let mut s; let w, x, y, z; let trace = self.trace(); let _1: T = Number::from(1.0); let half: T = Number::from(0.5); if trace >= Number::from(0) { s = (_1 + trace).sqrt(); w = half * s; s = half / s; x = (self[1][2] - self[2][1]) * s; y = (self[2][0] - self[0][2]) * s; z = (self[0][1] - self[1][0]) * s; } else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) { s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt(); w = half * s; s = half / s; x = (self[0][1] - self[1][0]) * s; y = (self[2][0] - self[0][2]) * s; z = (self[1][2] - self[2][1]) * s; } else if self[1][1] > self[2][2] { s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt(); w = half * s; s = half / s; x = (self[0][1] - self[1][0]) * s; y = (self[1][2] - self[2][1]) * s; z = (self[2][0] - self[0][2]) * s; } else { s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt(); w = half * s; s = half / s; x = (self[2][0] - self[0][2]) * s; y = (self[1][2] - self[2][1]) * s; z = (self[0][1] - self[1][0]) * s; } Quat::new(w, x, y, z) } } pub impl Mat3: Dimensional> { #[inline(always)] static pure fn dim() -> uint { 3 } #[inline(always)] static pure fn size_of() -> uint { size_of::>() } } pub impl Mat3: Index> { #[inline(always)] pure fn index(i: uint) -> Vec3 { unsafe { do buf_as_slice( transmute::<*Mat3, *Vec3>( to_unsafe_ptr(&self)), 3) |slice| { slice[i] } } } } pub impl Mat3: ToPtr { #[inline(always)] pure fn to_ptr(&self) -> *T { unsafe { transmute::<*Mat3, *T>( to_unsafe_ptr(&*self) ) } } } pub impl Mat3: Neg> { #[inline(always)] pure fn neg(&self) -> Mat3 { Mat3::from_cols(-self[0], -self[1], -self[2]) } } pub impl Mat3: Eq { #[inline(always)] pure fn eq(&self, other: &Mat3) -> bool { self[0] == other[0] && self[1] == other[1] && self[2] == other[2] } #[inline(always)] pure fn ne(&self, other: &Mat3) -> bool { !(self == other) } } pub impl Mat3: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat3) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) } } /** * A 4 x 4 column major matrix * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix * * `w` - the fourth column vector of the matrix */ pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4 } pub impl Mat4 { /** * Construct a 4 x 4 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix * * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix * * ~~~ * c0 c1 c2 c3 * +------+------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | c3r0 | * +------+------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | c3r1 | * +------+------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | c3r2 | * +------+------+------+------+ * r3 | c0r3 | c1r3 | c2r3 | c3r3 | * +------+------+------+------+ * ~~~ */ #[inline(always)] static pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3), Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3), Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3), Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3)) } /** * Construct a 4 x 4 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * `c3` - the fourth column vector of the matrix * * ~~~ * c0 c1 c2 c3 * +------+------+------+------+ * r0 | c0.x | c1.x | c2.x | c3.x | * +------+------+------+------+ * r1 | c0.y | c1.y | c2.y | c3.y | * +------+------+------+------+ * r2 | c0.z | c1.z | c2.z | c3.z | * +------+------+------+------+ * r3 | c0.w | c1.w | c2.w | c3.w | * +------+------+------+------+ * ~~~ */ #[inline(always)] static pure fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { Mat4 { x: move c0, y: move c1, z: move c2, w: move c3 } } /** * Construct a 4 x 4 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 c3 * +-----+-----+-----+-----+ * r0 | val | 0 | 0 | 0 | * +-----+-----+-----+-----+ * r1 | 0 | val | 0 | 0 | * +-----+-----+-----+-----+ * r2 | 0 | 0 | val | 0 | * +-----+-----+-----+-----+ * r3 | 0 | 0 | 0 | val | * +-----+-----+-----+-----+ * ~~~ */ #[inline(always)] static pure fn from_value(value: T) -> Mat4 { let _0 = cast(0); Mat4::new(value, _0, _0, _0, _0, value, _0, _0, _0, _0, value, _0, _0, _0, _0, value) } #[inline(always)] static pure fn from_Mat2(m: &Mat2) -> Mat4 { let _0 = cast(0); let _1 = cast(1); Mat4::new(m[0][0], m[0][1], _0, _0, m[1][0], m[1][1], _0, _0, _0, _0, _1, _0, _0, _0, _0, _1) } #[inline(always)] static pure fn from_Mat3(m: &Mat3) -> Mat4 { let _0 = cast(0); let _1 = cast(1); Mat4::new(m[0][0], m[0][1], m[0][2], _0, m[1][0], m[1][1], m[1][2], _0, m[2][0], m[2][1], m[2][2], _0, _0, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn identity() -> Mat4 { let _0 = cast(0); let _1 = cast(1); Mat4::new(_1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn zero() -> Mat4 { let _0 = cast(0); Mat4::new(_0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0) } } pub impl Mat4: Matrix> { #[inline(always)] pure fn col(&self, i: uint) -> Vec4 { self[i] } #[inline(always)] pure fn row(&self, i: uint) -> Vec4 { Vec4::new(self[0][i], self[1][i], self[2][i], self[3][i]) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 c3 * +----+----+----+----+ * r0 | 1 | 0 | 0 | 0 | * +----+----+----+----+ * r1 | 0 | 1 | 0 | 0 | * +----+----+----+----+ * r2 | 0 | 0 | 1 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] static pure fn identity() -> Mat4 { let _0 = Number::from(0); let _1 = Number::from(1); Mat4::new(_1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 c3 * +----+----+----+----+ * r0 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r1 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r2 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * ~~~ */ #[inline(always)] static pure fn zero() -> Mat4 { let _0 = Number::from(0); Mat4::new(_0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0, _0) } #[inline(always)] pure fn mul_t(&self, value: T) -> Mat4 { Mat4::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value), self[3].mul_t(value)) } #[inline(always)] pure fn mul_v(&self, vec: &Vec4) -> Vec4 { Vec4::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec), self.row(3).dot(vec)) } #[inline(always)] pure fn add_m(&self, other: &Mat4) -> Mat4 { Mat4::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2]), self[3].add_v(&other[3])) } #[inline(always)] pure fn sub_m(&self, other: &Mat4) -> Mat4 { Mat4::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2]), self[3].sub_v(&other[3])) } #[inline(always)] pure fn mul_m(&self, other: &Mat4) -> Mat4 { // Surprisingly when building with optimisation turned on this is actually // faster than writing out the matrix multiplication in expanded form. // If you don't believe me, see ./test/performance/matrix_mul.rs Mat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)), self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)), self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3))) } pure fn dot(&self, other: &Mat4) -> T { other.transpose().mul_m(self).trace() } pure fn determinant(&self) -> T { self[0][0]*Mat3::new(self[1][1], self[2][1], self[3][1], self[1][2], self[2][2], self[3][2], self[1][3], self[2][3], self[3][3]).determinant() - self[1][0]*Mat3::new(self[0][1], self[2][1], self[3][1], self[0][2], self[2][2], self[3][2], self[0][3], self[2][3], self[3][3]).determinant() + self[2][0]*Mat3::new(self[0][1], self[1][1], self[3][1], self[0][2], self[1][2], self[3][2], self[0][3], self[1][3], self[3][3]).determinant() - self[3][0]*Mat3::new(self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2], self[0][3], self[1][3], self[2][3]).determinant() } pure fn trace(&self) -> T { self[0][0] + self[1][1] + self[2][2] + self[3][3] } pure fn inverse(&self) -> Option> { let d = self.determinant(); // let _0 = Number::from(0); // FIXME: Triggers ICE let _0 = cast(0); if d.fuzzy_eq(&_0) { None } else { // Gauss Jordan Elimination with partial pivoting // TODO: use column/row swapping methods. Check with Luqman to see // if the column-major layout has been used correctly let mut a = *self; // let mut inv: Mat4 = Matrix::identity(); // FIXME: there's something wrong with static functions here! let mut inv = Mat4::identity(); // Find largest pivot column j among rows j..3 for uint::range(0, 4) |j| { let mut i1 = j; for uint::range(j + 1, 4) |i| { if abs(&a[i][j]) > abs(&a[i1][j]) { i1 = i; } } // Swap rows i1 and j in a and inv to // put pivot on diagonal let c = [mut a.x, a.y, a.z, a.w]; c[i1] <-> c[j]; a = Mat4::from_cols(c[0], c[1], c[2], c[3]); let c = [mut inv.x, inv.y, inv.z, inv.w]; c[i1] <-> c[j]; inv = Mat4::from_cols(c[0], c[1], c[2], c[3]); // Scale row j to have a unit diagonal let c = [mut inv.x, inv.y, inv.z, inv.w]; c[j] = c[j].div_t(a[j][j]); inv = Mat4::from_cols(c[0], c[1], c[2], c[3]); let c = [mut a.x, a.y, a.z, a.w]; c[j] = c[j].div_t(a[j][j]); a = Mat4::from_cols(c[0], c[1], c[2], c[3]); // Eliminate off-diagonal elems in col j of a, // doing identical ops to inv for uint::range(0, 4) |i| { if i != j { let c = [mut inv.x, inv.y, inv.z, inv.w]; c[i] = c[i].sub_v(&c[j].mul_t(a[i][j])); inv = Mat4::from_cols(c[0], c[1], c[2], c[3]); let c = [mut a.x, a.y, a.z, a.w]; c[i] = c[i].sub_v(&c[j].mul_t(a[i][j])); a = Mat4::from_cols(c[0], c[1], c[2], c[3]); } } } Some(inv) } } #[inline(always)] pure fn transpose(&self) -> Mat4 { Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0], self[0][1], self[1][1], self[2][1], self[3][1], self[0][2], self[1][2], self[2][2], self[3][2], self[0][3], self[1][3], self[2][3], self[3][3]) } #[inline(always)] pure fn is_identity(&self) -> bool { // self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! self.fuzzy_eq(&Mat4::identity()) } #[inline(always)] pure fn is_diagonal(&self) -> bool { let _0 = cast(0); self[0][1].fuzzy_eq(&_0) && self[0][2].fuzzy_eq(&_0) && self[0][3].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) && self[1][2].fuzzy_eq(&_0) && self[1][3].fuzzy_eq(&_0) && self[2][0].fuzzy_eq(&_0) && self[2][1].fuzzy_eq(&_0) && self[2][3].fuzzy_eq(&_0) && self[3][0].fuzzy_eq(&_0) && self[3][1].fuzzy_eq(&_0) && self[3][2].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated(&self) -> bool { // !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! !self.fuzzy_eq(&Mat4::identity()) } #[inline(always)] pure fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[0][3].fuzzy_eq(&self[3][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[1][3].fuzzy_eq(&self[3][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) && self[2][3].fuzzy_eq(&self[3][2]) && self[3][0].fuzzy_eq(&self[0][3]) && self[3][1].fuzzy_eq(&self[1][3]) && self[3][2].fuzzy_eq(&self[2][3]) } #[inline(always)] pure fn is_invertible(&self) -> bool { let _0 = cast(0); !self.determinant().fuzzy_eq(&_0) } } pub impl Mat4: MutableMatrix> { #[inline(always)] fn col_mut(&mut self, i: uint) -> &self/mut Vec4 { match i { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, 3 => &mut self.w, _ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { util::swap(self.col_mut(a), self.col_mut(b)); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); self.w.swap(a, b); } #[inline(always)] fn to_identity(&mut self) { *self = Mat4::identity(); } #[inline(always)] fn to_zero(&mut self) { *self = Mat4::zero(); } } pub impl Mat4: Matrix4> { } pub impl Mat4: Neg> { #[inline(always)] pure fn neg(&self) -> Mat4 { Mat4::from_cols(-self[0], -self[1], -self[2], -self[3]) } } pub impl Mat4: Dimensional> { #[inline(always)] static pure fn dim() -> uint { 4 } #[inline(always)] static pure fn size_of() -> uint { size_of::>() } } pub impl Mat4: Index> { #[inline(always)] pure fn index(i: uint) -> Vec4 { unsafe { do buf_as_slice( transmute::<*Mat4, *Vec4>( to_unsafe_ptr(&self)), 4) |slice| { slice[i] } } } } pub impl Mat4: ToPtr { #[inline(always)] pure fn to_ptr(&self) -> *T { unsafe { transmute::<*Mat4, *T>( to_unsafe_ptr(&*self) ) } } } pub impl Mat4: Eq { #[inline(always)] pure fn eq(&self, other: &Mat4) -> bool { self[0] == other[0] && self[1] == other[1] && self[2] == other[2] && self[3] == other[3] } #[inline(always)] pure fn ne(&self, other: &Mat4) -> bool { !(self == other) } } pub impl Mat4: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat4) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) && self[3].fuzzy_eq(&other[3]) } }