// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::iter; use std::mem; use std::ops::*; use rand::{Rand, Rng}; use num_traits::{NumCast, cast}; use structure::*; use angle::Rad; use approx::ApproxEq; use euler::Euler; use matrix::{Matrix3, Matrix4}; use num::BaseFloat; use point::Point3; use rotation::{Rotation, Rotation3, Basis3}; use vector::Vector3; #[cfg(feature = "simd")] use simd::f32x4 as Simdf32x4; #[cfg(feature = "mint")] use mint; /// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector /// form. /// /// This type is marked as `#[repr(C)]`. #[repr(C)] #[derive(Copy, Clone, Debug, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Quaternion { /// The scalar part of the quaternion. pub s: S, /// The vector part of the quaternion. pub v: Vector3, } #[cfg(feature = "simd")] impl From for Quaternion { #[inline] fn from(f: Simdf32x4) -> Self { unsafe { let mut ret: Self = mem::uninitialized(); { let ret_mut: &mut [f32; 4] = ret.as_mut(); f.store(ret_mut.as_mut(), 0 as usize); } ret } } } #[cfg(feature = "simd")] impl Into for Quaternion { #[inline] fn into(self) -> Simdf32x4 { let self_ref: &[f32; 4] = self.as_ref(); Simdf32x4::load(self_ref.as_ref(), 0 as usize) } } impl Quaternion { /// Construct a new quaternion from one scalar component and three /// imaginary components. #[inline] pub fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion { Quaternion::from_sv(w, Vector3::new(xi, yj, zk)) } /// Construct a new quaternion from a scalar and a vector. #[inline] pub fn from_sv(s: S, v: Vector3) -> Quaternion { Quaternion { s: s, v: v } } /// Construct a new quaternion as a closest arc between two vectors /// /// Return the closest rotation that turns `src` vector into `dst`. /// /// - [Related StackOverflow question] /// (http://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another) /// - [Ogre implementation for normalized vectors] /// (https://bitbucket.org/sinbad/ogre/src/9db75e3ba05c/OgreMain/include/OgreVector3.h?fileviewer=file-view-default#cl-651) pub fn from_arc(src: Vector3, dst: Vector3, fallback: Option>) -> Quaternion { let mag_avg = (src.magnitude2() * dst.magnitude2()).sqrt(); let dot = src.dot(dst); if ulps_eq!(dot, &mag_avg) { Quaternion::::one() } else if ulps_eq!(dot, &-mag_avg) { let axis = fallback.unwrap_or_else(|| { let mut v = Vector3::unit_x().cross(src); if ulps_eq!(v, &Zero::zero()) { v = Vector3::unit_y().cross(src); } v.normalize() }); Quaternion::from_axis_angle(axis, Rad::turn_div_2()) } else { Quaternion::from_sv(mag_avg + dot, src.cross(dst)).normalize() } } /// The conjugate of the quaternion. #[inline] pub fn conjugate(self) -> Quaternion { Quaternion::from_sv(self.s, -self.v) } /// Do a normalized linear interpolation with `other`, by `amount`. pub fn nlerp(self, other: Quaternion, amount: S) -> Quaternion { (self * (S::one() - amount) + other * amount).normalize() } /// Spherical Linear Intoperlation /// /// Return the spherical linear interpolation between the quaternion and /// `other`. Both quaternions should be normalized first. /// /// # Performance notes /// /// The `acos` operation used in `slerp` is an expensive operation, so /// unless your quarternions are far away from each other it's generally /// more advisable to use `nlerp` when you know your rotations are going /// to be small. /// /// - [Understanding Slerp, Then Not Using It] /// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/) /// - [Arcsynthesis OpenGL tutorial] /// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) pub fn slerp(self, other: Quaternion, amount: S) -> Quaternion { let dot = self.dot(other); let dot_threshold = cast(0.9995f64).unwrap(); // if quaternions are close together use `nlerp` if dot > dot_threshold { self.nlerp(other, amount) } else { // stay within the domain of acos() // TODO REMOVE WHEN https://github.com/mozilla/rust/issues/12068 IS RESOLVED let robust_dot = if dot > S::one() { S::one() } else if dot < -S::one() { -S::one() } else { dot }; let theta = Rad::acos(robust_dot.clone()); let scale1 = Rad::sin(theta * (S::one() - amount)); let scale2 = Rad::sin(theta * amount); (self * scale1 + other * scale2) * Rad::sin(theta).recip() } } } impl Zero for Quaternion { #[inline] fn zero() -> Quaternion { Quaternion::from_sv(S::zero(), Vector3::zero()) } #[inline] fn is_zero(&self) -> bool { ulps_eq!(self, &Quaternion::::zero()) } } impl One for Quaternion { #[inline] fn one() -> Quaternion { Quaternion::from_sv(S::one(), Vector3::zero()) } } impl iter::Sum> for Quaternion { #[inline] fn sum>>(iter: I) -> Quaternion { iter.fold(Quaternion::::zero(), Add::add) } } impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Quaternion> for Quaternion { #[inline] fn sum>>(iter: I) -> Quaternion { iter.fold(Quaternion::::zero(), Add::add) } } impl iter::Product> for Quaternion { #[inline] fn product>>(iter: I) -> Quaternion { iter.fold(Quaternion::::one(), Mul::mul) } } impl<'a, S: 'a + BaseFloat> iter::Product<&'a Quaternion> for Quaternion { #[inline] fn product>>(iter: I) -> Quaternion { iter.fold(Quaternion::::one(), Mul::mul) } } impl VectorSpace for Quaternion { type Scalar = S; } impl MetricSpace for Quaternion { type Metric = S; #[inline] fn distance2(self, other: Self) -> S { (other - self).magnitude2() } } impl Quaternion { /// Component-wise casting to another type. pub fn cast(&self) -> Quaternion { Quaternion::from_sv(NumCast::from(self.s).unwrap(), self.v.cast()) } } #[cfg(not(feature = "simd"))] impl InnerSpace for Quaternion { #[inline] fn dot(self, other: Quaternion) -> S { self.s * other.s + self.v.dot(other.v) } } #[cfg(feature = "simd")] impl InnerSpace for Quaternion { #[inline] default fn dot(self, other: Quaternion) -> S { self.s * other.s + self.v.dot(other.v) } } #[cfg(feature = "simd")] impl InnerSpace for Quaternion { #[inline] fn dot(self, other: Quaternion) -> f32 { let lhs: Simdf32x4 = self.into(); let rhs: Simdf32x4 = other.into(); let r = lhs * rhs; r.extract(0) + r.extract(1) + r.extract(2) + r.extract(3) } } impl From> for Quaternion where A: Angle + Into::Unitless>>, { fn from(src: Euler) -> Quaternion { // Euclidean Space has an Euler to quat equation, but it is for a different order (YXZ): // http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm // Page A-2 here has the formula for XYZ: // http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf let half = cast(0.5f64).unwrap(); let (s_x, c_x) = Rad::sin_cos(src.x.into() * half); let (s_y, c_y) = Rad::sin_cos(src.y.into() * half); let (s_z, c_z) = Rad::sin_cos(src.z.into() * half); Quaternion::new(-s_x * s_y * s_z + c_x * c_y * c_z, s_x * c_y * c_z + s_y * s_z * c_x, -s_x * s_z * c_y + s_y * c_x * c_z, s_x * s_y * c_z + s_z * c_x * c_y) } } #[cfg(not(feature = "simd"))] impl_operator!( Neg for Quaternion { fn neg(quat) -> Quaternion { Quaternion::from_sv(-quat.s, -quat.v) } }); #[cfg(feature = "simd")] impl_operator_default!( Neg for Quaternion { fn neg(quat) -> Quaternion { Quaternion::from_sv(-quat.s, -quat.v) } }); #[cfg(feature = "simd")] impl_operator_simd!{ [Simdf32x4]; Neg for Quaternion { fn neg(lhs) -> Quaternion { (-lhs).into() } } } #[cfg(not(feature = "simd"))] impl_operator!( Mul for Quaternion { fn mul(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs) } }); #[cfg(feature = "simd")] impl_operator_default!( Mul for Quaternion { fn mul(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs) } }); #[cfg(feature = "simd")] impl_operator_simd!{@rs [Simdf32x4]; Mul for Quaternion { fn mul(lhs, rhs) -> Quaternion { (lhs * rhs).into() } } } #[cfg(not(feature = "simd"))] impl_assignment_operator!( MulAssign for Quaternion { fn mul_assign(&mut self, scalar) { self.s *= scalar; self.v *= scalar; } }); #[cfg(feature = "simd")] impl_assignment_operator_default!( MulAssign for Quaternion { fn mul_assign(&mut self, scalar) { self.s *= scalar; self.v *= scalar; } }); #[cfg(feature = "simd")] impl MulAssign for Quaternion { fn mul_assign(&mut self, other: f32) { let s: Simdf32x4 = (*self).into(); let other = Simdf32x4::splat(other); *self = (s * other).into(); } } #[cfg(not(feature = "simd"))] impl_operator!( Div for Quaternion { fn div(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs) } }); #[cfg(feature = "simd")] impl_operator_default!( Div for Quaternion { fn div(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs) } }); #[cfg(feature = "simd")] impl_operator_simd!{@rs [Simdf32x4]; Div for Quaternion { fn div(lhs, rhs) -> Quaternion { (lhs / rhs).into() } } } #[cfg(not(feature = "simd"))] impl_assignment_operator!( DivAssign for Quaternion { fn div_assign(&mut self, scalar) { self.s /= scalar; self.v /= scalar; } }); #[cfg(feature = "simd")] impl_assignment_operator_default!( DivAssign for Quaternion { fn div_assign(&mut self, scalar) { self.s /= scalar; self.v /= scalar; } }); #[cfg(feature = "simd")] impl DivAssign for Quaternion { fn div_assign(&mut self, other: f32) { let s: Simdf32x4 = (*self).into(); let other = Simdf32x4::splat(other); *self = (s / other).into(); } } impl_operator!( Rem for Quaternion { fn rem(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s % rhs, lhs.v % rhs) } }); impl_assignment_operator!( RemAssign for Quaternion { fn rem_assign(&mut self, scalar) { self.s %= scalar; self.v %= scalar; } }); impl_operator!( Mul > for Quaternion { fn mul(lhs, rhs) -> Vector3 {{ let rhs = rhs.clone(); let two: S = cast(2i8).unwrap(); let tmp = lhs.v.cross(rhs) + (rhs * lhs.s); (lhs.v.cross(tmp) * two) + rhs }} }); #[cfg(not(feature = "simd"))] impl_operator!( Add > for Quaternion { fn add(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v) } }); #[cfg(feature = "simd")] impl_operator_default!( Add > for Quaternion { fn add(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v) } }); #[cfg(feature = "simd")] impl_operator_simd!{ [Simdf32x4]; Add> for Quaternion { fn add(lhs, rhs) -> Quaternion { (lhs + rhs).into() } } } #[cfg(not(feature = "simd"))] impl_assignment_operator!( AddAssign > for Quaternion { fn add_assign(&mut self, other) { self.s += other.s; self.v += other.v; } }); #[cfg(feature = "simd")] impl_assignment_operator_default!( AddAssign > for Quaternion { fn add_assign(&mut self, other) { self.s += other.s; self.v += other.v; } }); #[cfg(feature = "simd")] impl AddAssign for Quaternion { #[inline] fn add_assign(&mut self, rhs: Self) { let s: Simdf32x4 = (*self).into(); let rhs: Simdf32x4 = rhs.into(); *self = (s + rhs).into(); } } #[cfg(not(feature = "simd"))] impl_operator!( Sub > for Quaternion { fn sub(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v) } }); #[cfg(feature = "simd")] impl_operator_default!( Sub > for Quaternion { fn sub(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v) } }); #[cfg(feature = "simd")] impl_operator_simd!{ [Simdf32x4]; Sub> for Quaternion { fn sub(lhs, rhs) -> Quaternion { (lhs - rhs).into() } } } #[cfg(not(feature = "simd"))] impl_assignment_operator!( SubAssign > for Quaternion { fn sub_assign(&mut self, other) { self.s -= other.s; self.v -= other.v; } }); #[cfg(feature = "simd")] impl_assignment_operator_default!( SubAssign > for Quaternion { fn sub_assign(&mut self, other) { self.s -= other.s; self.v -= other.v; } }); #[cfg(feature = "simd")] impl SubAssign for Quaternion { #[inline] fn sub_assign(&mut self, rhs: Self) { let s: Simdf32x4 = (*self).into(); let rhs: Simdf32x4 = rhs.into(); *self = (s - rhs).into(); } } #[cfg(not(feature = "simd"))] impl_operator!( Mul > for Quaternion { fn mul(lhs, rhs) -> Quaternion { Quaternion::new(lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z, lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y, lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z, lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x) } }); #[cfg(feature = "simd")] impl_operator_default!( Mul > for Quaternion { fn mul(lhs, rhs) -> Quaternion { Quaternion::new(lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z, lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y, lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z, lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x) } }); #[cfg(feature = "simd")] impl_operator_simd!{ [Simdf32x4]; Mul> for Quaternion { fn mul(lhs, rhs) -> Quaternion { { let p0 = Simdf32x4::splat(lhs.extract(0)) * rhs; let p1 = Simdf32x4::splat(lhs.extract(1)) * Simdf32x4::new( -rhs.extract(1), rhs.extract(0), -rhs.extract(3), rhs.extract(2) ); let p2 = Simdf32x4::splat(lhs.extract(2)) * Simdf32x4::new( -rhs.extract(2), rhs.extract(3), rhs.extract(0), -rhs.extract(1) ); let p3 = Simdf32x4::splat(lhs.extract(3)) * Simdf32x4::new( -rhs.extract(3), -rhs.extract(2), rhs.extract(1), rhs.extract(0) ); (p0 + p1 + p2 + p3).into() } } } } macro_rules! impl_scalar_mul { ($S:ident) => { impl_operator!(Mul> for $S { fn mul(scalar, quat) -> Quaternion<$S> { Quaternion::from_sv(scalar * quat.s, scalar * quat.v) } }); }; } macro_rules! impl_scalar_div { ($S:ident) => { impl_operator!(Div> for $S { fn div(scalar, quat) -> Quaternion<$S> { Quaternion::from_sv(scalar / quat.s, scalar / quat.v) } }); }; } impl_scalar_mul!(f32); impl_scalar_mul!(f64); impl_scalar_div!(f32); impl_scalar_div!(f64); impl ApproxEq for Quaternion { type Epsilon = S::Epsilon; #[inline] fn default_epsilon() -> S::Epsilon { S::default_epsilon() } #[inline] fn default_max_relative() -> S::Epsilon { S::default_max_relative() } #[inline] fn default_max_ulps() -> u32 { S::default_max_ulps() } #[inline] fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool { S::relative_eq(&self.s, &other.s, epsilon, max_relative) && Vector3::relative_eq(&self.v, &other.v, epsilon, max_relative) } #[inline] fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool { S::ulps_eq(&self.s, &other.s, epsilon, max_ulps) && Vector3::ulps_eq(&self.v, &other.v, epsilon, max_ulps) } } impl From> for Matrix3 { /// Convert the quaternion to a 3 x 3 rotation matrix. fn from(quat: Quaternion) -> Matrix3 { let x2 = quat.v.x + quat.v.x; let y2 = quat.v.y + quat.v.y; let z2 = quat.v.z + quat.v.z; let xx2 = x2 * quat.v.x; let xy2 = x2 * quat.v.y; let xz2 = x2 * quat.v.z; let yy2 = y2 * quat.v.y; let yz2 = y2 * quat.v.z; let zz2 = z2 * quat.v.z; let sy2 = y2 * quat.s; let sz2 = z2 * quat.s; let sx2 = x2 * quat.s; Matrix3::new(S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2) } } impl From> for Matrix4 { /// Convert the quaternion to a 4 x 4 rotation matrix. fn from(quat: Quaternion) -> Matrix4 { let x2 = quat.v.x + quat.v.x; let y2 = quat.v.y + quat.v.y; let z2 = quat.v.z + quat.v.z; let xx2 = x2 * quat.v.x; let xy2 = x2 * quat.v.y; let xz2 = x2 * quat.v.z; let yy2 = y2 * quat.v.y; let yz2 = y2 * quat.v.z; let zz2 = z2 * quat.v.z; let sy2 = y2 * quat.s; let sz2 = z2 * quat.s; let sx2 = x2 * quat.s; Matrix4::new(S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, S::zero(), xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, S::zero(), xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2, S::zero(), S::zero(), S::zero(), S::zero(), S::one()) } } // Quaternion Rotation impls impl From> for Basis3 { #[inline] fn from(quat: Quaternion) -> Basis3 { Basis3::from_quaternion(&quat) } } impl Rotation> for Quaternion { #[inline] fn look_at(dir: Vector3, up: Vector3) -> Quaternion { Matrix3::look_at(dir, up).into() } #[inline] fn between_vectors(a: Vector3, b: Vector3) -> Quaternion { // http://stackoverflow.com/a/11741520/2074937 see 'Half-Way Quaternion Solution' let k_cos_theta = a.dot(b); // same direction if ulps_eq!(k_cos_theta, S::one()) { return Quaternion::::one(); } let k = (a.magnitude2() * b.magnitude2()).sqrt(); // opposite direction if ulps_eq!(k_cos_theta / k, -S::one()) { let mut orthogonal = a.cross(Vector3::unit_x()); if ulps_eq!(orthogonal.magnitude2(), S::zero()) { orthogonal = a.cross(Vector3::unit_y()); } return Quaternion::from_sv(S::zero(), orthogonal.normalize()); } // any other direction Quaternion::from_sv(k + k_cos_theta, a.cross(b)).normalize() } #[inline] fn rotate_vector(&self, vec: Vector3) -> Vector3 { self * vec } #[inline] fn invert(&self) -> Quaternion { self.conjugate() / self.magnitude2() } } impl Rotation3 for Quaternion { #[inline] fn from_axis_angle>>(axis: Vector3, angle: A) -> Quaternion { let (s, c) = Rad::sin_cos(angle.into() * cast(0.5f64).unwrap()); Quaternion::from_sv(c, axis * s) } } impl Into<[S; 4]> for Quaternion { #[inline] fn into(self) -> [S; 4] { match self.into() { (w, xi, yj, zk) => [w, xi, yj, zk] } } } impl AsRef<[S; 4]> for Quaternion { #[inline] fn as_ref(&self) -> &[S; 4] { unsafe { mem::transmute(self) } } } impl AsMut<[S; 4]> for Quaternion { #[inline] fn as_mut(&mut self) -> &mut [S; 4] { unsafe { mem::transmute(self) } } } impl From<[S; 4]> for Quaternion { #[inline] fn from(v: [S; 4]) -> Quaternion { Quaternion::new(v[0], v[1], v[2], v[3]) } } impl<'a, S: BaseFloat> From<&'a [S; 4]> for &'a Quaternion { #[inline] fn from(v: &'a [S; 4]) -> &'a Quaternion { unsafe { mem::transmute(v) } } } impl<'a, S: BaseFloat> From<&'a mut [S; 4]> for &'a mut Quaternion { #[inline] fn from(v: &'a mut [S; 4]) -> &'a mut Quaternion { unsafe { mem::transmute(v) } } } impl Into<(S, S, S, S)> for Quaternion { #[inline] fn into(self) -> (S, S, S, S) { match self { Quaternion { s, v: Vector3 { x, y, z } } => (s, x, y, z) } } } impl AsRef<(S, S, S, S)> for Quaternion { #[inline] fn as_ref(&self) -> &(S, S, S, S) { unsafe { mem::transmute(self) } } } impl AsMut<(S, S, S, S)> for Quaternion { #[inline] fn as_mut(&mut self) -> &mut (S, S, S, S) { unsafe { mem::transmute(self) } } } impl From<(S, S, S, S)> for Quaternion { #[inline] fn from(v: (S, S, S, S)) -> Quaternion { match v { (w, xi, yj, zk) => Quaternion::new(w, xi, yj, zk) } } } impl<'a, S: BaseFloat> From<&'a (S, S, S, S)> for &'a Quaternion { #[inline] fn from(v: &'a (S, S, S, S)) -> &'a Quaternion { unsafe { mem::transmute(v) } } } impl<'a, S: BaseFloat> From<&'a mut (S, S, S, S)> for &'a mut Quaternion { #[inline] fn from(v: &'a mut (S, S, S, S)) -> &'a mut Quaternion { unsafe { mem::transmute(v) } } } macro_rules! index_operators { ($S:ident, $Output:ty, $I:ty) => { impl<$S: BaseFloat> Index<$I> for Quaternion<$S> { type Output = $Output; #[inline] fn index<'a>(&'a self, i: $I) -> &'a $Output { let v: &[$S; 4] = self.as_ref(); &v[i] } } impl<$S: BaseFloat> IndexMut<$I> for Quaternion<$S> { #[inline] fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output { let v: &mut [$S; 4] = self.as_mut(); &mut v[i] } } } } index_operators!(S, S, usize); index_operators!(S, [S], Range); index_operators!(S, [S], RangeTo); index_operators!(S, [S], RangeFrom); index_operators!(S, [S], RangeFull); impl Rand for Quaternion { #[inline] fn rand(rng: &mut R) -> Quaternion { Quaternion::from_sv(rng.gen(), rng.gen()) } } #[cfg(feature = "mint")] impl From> for Quaternion { fn from(q: mint::Quaternion) -> Self { Quaternion { s: q.s, v: q.v.into(), } } } #[cfg(feature = "mint")] impl Into> for Quaternion { fn into(self) -> mint::Quaternion { mint::Quaternion { s: self.s, v: self.v.into(), } } } #[cfg(test)] mod tests { use quaternion::*; use vector::*; const QUATERNION: Quaternion = Quaternion { s: 1.0, v: Vector3 { x: 2.0, y: 3.0, z: 4.0 }, }; #[test] fn test_into() { let v = QUATERNION; { let v: [f32; 4] = v.into(); assert_eq!(v, [1.0, 2.0, 3.0, 4.0]); } { let v: (f32, f32, f32, f32) = v.into(); assert_eq!(v, (1.0, 2.0, 3.0, 4.0)); } } #[test] fn test_as_ref() { let v = QUATERNION; { let v: &[f32; 4] = v.as_ref(); assert_eq!(v, &[1.0, 2.0, 3.0, 4.0]); } { let v: &(f32, f32, f32, f32) = v.as_ref(); assert_eq!(v, &(1.0, 2.0, 3.0, 4.0)); } } #[test] fn test_as_mut() { let mut v = QUATERNION; { let v: &mut[f32; 4] = v.as_mut(); assert_eq!(v, &mut [1.0, 2.0, 3.0, 4.0]); } { let v: &mut(f32, f32, f32, f32) = v.as_mut(); assert_eq!(v, &mut (1.0, 2.0, 3.0, 4.0)); } } #[test] fn test_from() { assert_eq!(Quaternion::from([1.0, 2.0, 3.0, 4.0]), QUATERNION); { let v = &[1.0, 2.0, 3.0, 4.0]; let v: &Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } { let v = &mut [1.0, 2.0, 3.0, 4.0]; let v: &mut Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } assert_eq!(Quaternion::from((1.0, 2.0, 3.0, 4.0)), QUATERNION); { let v = &(1.0, 2.0, 3.0, 4.0); let v: &Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } { let v = &mut (1.0, 2.0, 3.0, 4.0); let v: &mut Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } } }