// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Column major, square matrix types and traits. use std::fmt; use std::mem; use std::ops::*; use std::ptr; use rand::{Rand, Rng}; use rust_num::{Zero, One}; use rust_num::traits::cast; use angle::{Angle, Rad}; use approx::ApproxEq; use array::Array; use num::BaseFloat; use point::{EuclideanSpace, Point3}; use quaternion::Quaternion; use vector::{VectorSpace, InnerSpace}; use vector::{Vector2, Vector3, Vector4}; /// A 2 x 2, column major matrix /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable)] pub struct Matrix2 { pub x: Vector2, pub y: Vector2, } /// A 3 x 3, column major matrix /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable)] pub struct Matrix3 { pub x: Vector3, pub y: Vector3, pub z: Vector3, } /// A 4 x 4, column major matrix /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable)] pub struct Matrix4 { pub x: Vector4, pub y: Vector4, pub z: Vector4, pub w: Vector4, } impl Matrix2 { /// Create a new matrix, providing values for each index. #[inline] pub fn new(c0r0: S, c0r1: S, c1r0: S, c1r1: S) -> Matrix2 { Matrix2::from_cols(Vector2::new(c0r0, c0r1), Vector2::new(c1r0, c1r1)) } /// Create a new matrix, providing columns. #[inline] pub fn from_cols(c0: Vector2, c1: Vector2) -> Matrix2 { Matrix2 { x: c0, y: c1 } } /// Create a transformation matrix that will cause a vector to point at /// `dir`, using `up` for orientation. pub fn look_at(dir: Vector2, up: Vector2) -> Matrix2 { //TODO: verify look_at 2D Matrix2::from_cols(up, dir).transpose() } #[inline] pub fn from_angle(theta: Rad) -> Matrix2 { let cos_theta = Rad::cos(theta); let sin_theta = Rad::sin(theta); Matrix2::new(cos_theta, sin_theta, -sin_theta, cos_theta) } } impl Matrix3 { /// Create a new matrix, providing values for each index. #[inline] pub fn new(c0r0:S, c0r1:S, c0r2:S, c1r0:S, c1r1:S, c1r2:S, c2r0:S, c2r1:S, c2r2:S) -> Matrix3 { Matrix3::from_cols(Vector3::new(c0r0, c0r1, c0r2), Vector3::new(c1r0, c1r1, c1r2), Vector3::new(c2r0, c2r1, c2r2)) } /// Create a new matrix, providing columns. #[inline] pub fn from_cols(c0: Vector3, c1: Vector3, c2: Vector3) -> Matrix3 { Matrix3 { x: c0, y: c1, z: c2 } } /// Create a rotation matrix that will cause a vector to point at /// `dir`, using `up` for orientation. pub fn look_at(dir: Vector3, up: Vector3) -> Matrix3 { let dir = dir.normalize(); let side = up.cross(dir).normalize(); let up = dir.cross(side).normalize(); Matrix3::from_cols(side, up, dir).transpose() } /// Create a rotation matrix from a rotation around the `x` axis (pitch). pub fn from_angle_x(theta: Rad) -> Matrix3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let (s, c) = Rad::sin_cos(theta); Matrix3::new(S::one(), S::zero(), S::zero(), S::zero(), c, s, S::zero(), -s, c) } /// Create a rotation matrix from a rotation around the `y` axis (yaw). pub fn from_angle_y(theta: Rad) -> Matrix3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let (s, c) = Rad::sin_cos(theta); Matrix3::new(c, S::zero(), -s, S::zero(), S::one(), S::zero(), s, S::zero(), c) } /// Create a rotation matrix from a rotation around the `z` axis (roll). pub fn from_angle_z(theta: Rad) -> Matrix3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let (s, c) = Rad::sin_cos(theta); Matrix3::new( c, s, S::zero(), -s, c, S::zero(), S::zero(), S::zero(), S::one()) } /// Create a rotation matrix from a set of euler angles. /// /// # Parameters /// /// - `x`: the angular rotation around the `x` axis (pitch). /// - `y`: the angular rotation around the `y` axis (yaw). /// - `z`: the angular rotation around the `z` axis (roll). pub fn from_euler(x: Rad, y: Rad, z: Rad) -> Matrix3 { // http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations let (sx, cx) = Rad::sin_cos(x); let (sy, cy) = Rad::sin_cos(y); let (sz, cz) = Rad::sin_cos(z); Matrix3::new(cy * cz, cy * sz, -sy, -cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy) } /// Create a rotation matrix from an angle around an arbitrary axis. pub fn from_axis_angle(axis: Vector3, angle: Rad) -> Matrix3 { let (s, c) = Rad::sin_cos(angle); let _1subc = S::one() - c; Matrix3::new(_1subc * axis.x * axis.x + c, _1subc * axis.x * axis.y + s * axis.z, _1subc * axis.x * axis.z - s * axis.y, _1subc * axis.x * axis.y - s * axis.z, _1subc * axis.y * axis.y + c, _1subc * axis.y * axis.z + s * axis.x, _1subc * axis.x * axis.z + s * axis.y, _1subc * axis.y * axis.z - s * axis.x, _1subc * axis.z * axis.z + c) } } impl Matrix4 { /// Create a new matrix, providing values for each index. #[inline] pub fn new(c0r0: S, c0r1: S, c0r2: S, c0r3: S, c1r0: S, c1r1: S, c1r2: S, c1r3: S, c2r0: S, c2r1: S, c2r2: S, c2r3: S, c3r0: S, c3r1: S, c3r2: S, c3r3: S) -> Matrix4 { Matrix4::from_cols(Vector4::new(c0r0, c0r1, c0r2, c0r3), Vector4::new(c1r0, c1r1, c1r2, c1r3), Vector4::new(c2r0, c2r1, c2r2, c2r3), Vector4::new(c3r0, c3r1, c3r2, c3r3)) } /// Create a new matrix, providing columns. #[inline] pub fn from_cols(c0: Vector4, c1: Vector4, c2: Vector4, c3: Vector4) -> Matrix4 { Matrix4 { x: c0, y: c1, z: c2, w: c3 } } /// Create a homogeneous transformation matrix from a translation vector. #[inline] pub fn from_translation(v: Vector3) -> Matrix4 { Matrix4::new(S::one(), S::zero(), S::zero(), S::zero(), S::zero(), S::one(), S::zero(), S::zero(), S::zero(), S::zero(), S::one(), S::zero(), v.x, v.y, v.z, S::one()) } /// Create a homogeneous transformation matrix from a scale value. #[inline] pub fn from_scale(value: S) -> Matrix4 { Matrix4::from_nonuniform_scale(value, value, value) } /// Create a homogeneous transformation matrix from a set of scale values. #[inline] pub fn from_nonuniform_scale(x: S, y: S, z: S) -> Matrix4 { Matrix4::new(x, S::zero(), S::zero(), S::zero(), S::zero(), y, S::zero(), S::zero(), S::zero(), S::zero(), z, S::zero(), S::zero(), S::zero(), S::zero(), S::one()) } /// Create a homogeneous transformation matrix that will cause a vector to point at /// `dir`, using `up` for orientation. pub fn look_at(eye: Point3, center: Point3, up: Vector3) -> Matrix4 { let f = (center - eye).normalize(); let s = f.cross(up).normalize(); let u = s.cross(f); Matrix4::new(s.x.clone(), u.x.clone(), -f.x.clone(), S::zero(), s.y.clone(), u.y.clone(), -f.y.clone(), S::zero(), s.z.clone(), u.z.clone(), -f.z.clone(), S::zero(), -eye.dot(s), -eye.dot(u), eye.dot(f), S::one()) } } impl VectorSpace for Matrix2 { type Scalar = S; #[inline] fn zero() -> Matrix2 { Matrix2::new(S::zero(), S::zero(), S::zero(), S::zero()) } } impl VectorSpace for Matrix3 { type Scalar = S; #[inline] fn zero() -> Matrix3 { Matrix3::new(S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero()) } } impl VectorSpace for Matrix4 { type Scalar = S; #[inline] fn zero() -> Matrix4 { Matrix4::new(S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero(), S::zero()) } } /// A column-major matrix of arbitrary dimensions. /// /// Because this is constrained to the `VectorSpace` trait, this means that /// following operators are required to be implemented: /// /// Matrix addition: /// /// - `Add` /// - `Sub` /// - `Neg` /// /// Scalar multiplication: /// /// - `Mul` /// - `Div` /// - `Rem` /// /// Note that matrix multiplication is not required for implementors of this /// trait. This is due to the complexities of implementing these operators with /// Rust's current type system. For the multiplication of square matrices, /// see `SquareMatrix`. pub trait Matrix: VectorSpace where Self::Scalar: BaseFloat, // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092 Self: Index::Column>, Self: IndexMut::Column>, Self: ApproxEq::Scalar>, { /// The row vector of the matrix. type Row: VectorSpace + Array; /// The column vector of the matrix. type Column: VectorSpace + Array; /// The result of transposing the matrix type Transpose: Matrix; /// Get the pointer to the first element of the array. #[inline] fn as_ptr(&self) -> *const Self::Scalar { &self[0][0] } /// Get a mutable pointer to the first element of the array. #[inline] fn as_mut_ptr(&mut self) -> *mut Self::Scalar { &mut self[0][0] } /// Replace a column in the array. #[inline] fn replace_col(&mut self, c: usize, src: Self::Column) -> Self::Column { mem::replace(&mut self[c], src) } /// Get a row from this matrix by-value. fn row(&self, r: usize) -> Self::Row; /// Swap two rows of this array. fn swap_rows(&mut self, a: usize, b: usize); /// Swap two columns of this array. fn swap_columns(&mut self, a: usize, b: usize); /// Swap the values at index `a` and `b` fn swap_elements(&mut self, a: (usize, usize), b: (usize, usize)); /// Transpose this matrix, returning a new matrix. fn transpose(&self) -> Self::Transpose; } /// A column-major major matrix where the rows and column vectors are of the same dimensions. pub trait SquareMatrix where Self::Scalar: BaseFloat, Self: Matrix< // FIXME: Can be cleaned up once equality constraints in where clauses are implemented Column = ::ColumnRow, Row = ::ColumnRow, Transpose = Self, >, Self: Mul<::ColumnRow, Output = ::ColumnRow>, Self: Mul, { // FIXME: Will not be needed once equality constraints in where clauses are implemented /// The row/column vector of the matrix. /// /// This is used to constrain the column and rows to be of the same type in lieu of equality /// constraints being implemented for `where` clauses. Once those are added, this type will /// likely go away. type ColumnRow: VectorSpace + Array; /// Create a new diagonal matrix using the supplied value. fn from_value(value: Self::Scalar) -> Self; /// Create a matrix from a non-uniform scale fn from_diagonal(diagonal: Self::ColumnRow) -> Self; /// The [identity matrix](https://en.wikipedia.org/wiki/Identity_matrix). Multiplying this /// matrix with another has no effect. fn identity() -> Self; /// Transpose this matrix in-place. fn transpose_self(&mut self); /// Take the determinant of this matrix. fn determinant(&self) -> Self::Scalar; /// Return a vector containing the diagonal of this matrix. fn diagonal(&self) -> Self::ColumnRow; /// Return the trace of this matrix. That is, the sum of the diagonal. #[inline] fn trace(&self) -> Self::Scalar { self.diagonal().sum() } /// Invert this matrix, returning a new matrix. `m.mul_m(m.invert())` is /// the identity matrix. Returns `None` if this matrix is not invertible /// (has a determinant of zero). #[must_use] fn invert(&self) -> Option; /// Invert this matrix in-place. #[inline] fn invert_self(&mut self) { *self = self.invert().expect("Attempted to invert a matrix with zero determinant."); } /// Test if this matrix is invertible. #[inline] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Self::Scalar::zero()) } /// Test if this matrix is the identity matrix. That is, it is diagonal /// and every element in the diagonal is one. #[inline] fn is_identity(&self) -> bool { self.approx_eq(&Self::identity()) } /// Test if this is a diagonal matrix. That is, every element outside of /// the diagonal is 0. fn is_diagonal(&self) -> bool; /// Test if this matrix is symmetric. That is, it is equal to its /// transpose. fn is_symmetric(&self) -> bool; } impl Matrix for Matrix2 { type Column = Vector2; type Row = Vector2; type Transpose = Matrix2; #[inline] fn row(&self, r: usize) -> Vector2 { Vector2::new(self[0][r], self[1][r]) } #[inline] fn swap_rows(&mut self, a: usize, b: usize) { self[0].swap_elements(a, b); self[1].swap_elements(a, b); } #[inline] fn swap_columns(&mut self, a: usize, b: usize) { unsafe { ptr::swap(&mut self[a], &mut self[b]) }; } #[inline] fn swap_elements(&mut self, a: (usize, usize), b: (usize, usize)) { let (ac, ar) = a; let (bc, br) = b; unsafe { ptr::swap(&mut self[ac][ar], &mut self[bc][br]) }; } fn transpose(&self) -> Matrix2 { Matrix2::new(self[0][0], self[1][0], self[0][1], self[1][1]) } } impl SquareMatrix for Matrix2 { type ColumnRow = Vector2; #[inline] fn from_value(value: S) -> Matrix2 { Matrix2::new(value, S::zero(), S::zero(), value) } #[inline] fn from_diagonal(value: Vector2) -> Matrix2 { Matrix2::new(value.x, S::zero(), S::zero(), value.y) } #[inline] fn identity() -> Matrix2 { Matrix2::from_value(S::one()) } #[inline] fn transpose_self(&mut self) { self.swap_elements((0, 1), (1, 0)); } #[inline] fn determinant(&self) -> S { self[0][0] * self[1][1] - self[1][0] * self[0][1] } #[inline] fn diagonal(&self) -> Vector2 { Vector2::new(self[0][0], self[1][1]) } #[inline] fn invert(&self) -> Option> { let det = self.determinant(); if det.approx_eq(&S::zero()) { None } else { Some(Matrix2::new( self[1][1] / det, -self[0][1] / det, -self[1][0] / det, self[0][0] / det)) } } #[inline] fn is_diagonal(&self) -> bool { self[0][1].approx_eq(&S::zero()) && self[1][0].approx_eq(&S::zero()) } #[inline] fn is_symmetric(&self) -> bool { self[0][1].approx_eq(&self[1][0]) && self[1][0].approx_eq(&self[0][1]) } } impl Matrix for Matrix3 { type Column = Vector3; type Row = Vector3; type Transpose = Matrix3; #[inline] fn row(&self, r: usize) -> Vector3 { Vector3::new(self[0][r], self[1][r], self[2][r]) } #[inline] fn swap_rows(&mut self, a: usize, b: usize) { self[0].swap_elements(a, b); self[1].swap_elements(a, b); self[2].swap_elements(a, b); } #[inline] fn swap_columns(&mut self, a: usize, b: usize) { unsafe { ptr::swap(&mut self[a], &mut self[b]) }; } #[inline] fn swap_elements(&mut self, a: (usize, usize), b: (usize, usize)) { let (ac, ar) = a; let (bc, br) = b; unsafe { ptr::swap(&mut self[ac][ar], &mut self[bc][br]) }; } fn transpose(&self) -> Matrix3 { Matrix3::new(self[0][0], self[1][0], self[2][0], self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2]) } } impl SquareMatrix for Matrix3 { type ColumnRow = Vector3; #[inline] fn from_value(value: S) -> Matrix3 { Matrix3::new(value, S::zero(), S::zero(), S::zero(), value, S::zero(), S::zero(), S::zero(), value) } #[inline] fn from_diagonal(value: Vector3) -> Matrix3 { Matrix3::new(value.x, S::zero(), S::zero(), S::zero(), value.y, S::zero(), S::zero(), S::zero(), value.z) } #[inline] fn identity() -> Matrix3 { Matrix3::from_value(S::one()) } #[inline] fn transpose_self(&mut self) { self.swap_elements((0, 1), (1, 0)); self.swap_elements((0, 2), (2, 0)); self.swap_elements((1, 2), (2, 1)); } fn determinant(&self) -> S { self[0][0] * (self[1][1] * self[2][2] - self[2][1] * self[1][2]) - self[1][0] * (self[0][1] * self[2][2] - self[2][1] * self[0][2]) + self[2][0] * (self[0][1] * self[1][2] - self[1][1] * self[0][2]) } #[inline] fn diagonal(&self) -> Vector3 { Vector3::new(self[0][0], self[1][1], self[2][2]) } fn invert(&self) -> Option> { let det = self.determinant(); if det.approx_eq(&S::zero()) { None } else { Some(Matrix3::from_cols(self[1].cross(self[2]) / det, self[2].cross(self[0]) / det, self[0].cross(self[1]) / det).transpose()) } } fn is_diagonal(&self) -> bool { self[0][1].approx_eq(&S::zero()) && self[0][2].approx_eq(&S::zero()) && self[1][0].approx_eq(&S::zero()) && self[1][2].approx_eq(&S::zero()) && self[2][0].approx_eq(&S::zero()) && self[2][1].approx_eq(&S::zero()) } fn is_symmetric(&self) -> bool { self[0][1].approx_eq(&self[1][0]) && self[0][2].approx_eq(&self[2][0]) && self[1][0].approx_eq(&self[0][1]) && self[1][2].approx_eq(&self[2][1]) && self[2][0].approx_eq(&self[0][2]) && self[2][1].approx_eq(&self[1][2]) } } impl Matrix for Matrix4 { type Column = Vector4; type Row = Vector4; type Transpose = Matrix4; #[inline] fn row(&self, r: usize) -> Vector4 { Vector4::new(self[0][r], self[1][r], self[2][r], self[3][r]) } #[inline] fn swap_rows(&mut self, a: usize, b: usize) { self[0].swap_elements(a, b); self[1].swap_elements(a, b); self[2].swap_elements(a, b); self[3].swap_elements(a, b); } #[inline] fn swap_columns(&mut self, a: usize, b: usize) { unsafe { ptr::swap(&mut self[a], &mut self[b]) }; } #[inline] fn swap_elements(&mut self, a: (usize, usize), b: (usize, usize)) { let (ac, ar) = a; let (bc, br) = b; unsafe { ptr::swap(&mut self[ac][ar], &mut self[bc][br]) }; } fn transpose(&self) -> Matrix4 { Matrix4::new(self[0][0], self[1][0], self[2][0], self[3][0], self[0][1], self[1][1], self[2][1], self[3][1], self[0][2], self[1][2], self[2][2], self[3][2], self[0][3], self[1][3], self[2][3], self[3][3]) } } impl SquareMatrix for Matrix4 { type ColumnRow = Vector4; #[inline] fn from_value(value: S) -> Matrix4 { Matrix4::new(value, S::zero(), S::zero(), S::zero(), S::zero(), value, S::zero(), S::zero(), S::zero(), S::zero(), value, S::zero(), S::zero(), S::zero(), S::zero(), value) } #[inline] fn from_diagonal(value: Vector4) -> Matrix4 { Matrix4::new(value.x, S::zero(), S::zero(), S::zero(), S::zero(), value.y, S::zero(), S::zero(), S::zero(), S::zero(), value.z, S::zero(), S::zero(), S::zero(), S::zero(), value.w) } #[inline] fn identity() -> Matrix4 { Matrix4::from_value(S::one()) } fn transpose_self(&mut self) { self.swap_elements((0, 1), (1, 0)); self.swap_elements((0, 2), (2, 0)); self.swap_elements((0, 3), (3, 0)); self.swap_elements((1, 2), (2, 1)); self.swap_elements((1, 3), (3, 1)); self.swap_elements((2, 3), (3, 2)); } fn determinant(&self) -> S { let m0 = Matrix3::new(self[1][1], self[2][1], self[3][1], self[1][2], self[2][2], self[3][2], self[1][3], self[2][3], self[3][3]); let m1 = Matrix3::new(self[0][1], self[2][1], self[3][1], self[0][2], self[2][2], self[3][2], self[0][3], self[2][3], self[3][3]); let m2 = Matrix3::new(self[0][1], self[1][1], self[3][1], self[0][2], self[1][2], self[3][2], self[0][3], self[1][3], self[3][3]); let m3 = Matrix3::new(self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2], self[0][3], self[1][3], self[2][3]); self[0][0] * m0.determinant() - self[1][0] * m1.determinant() + self[2][0] * m2.determinant() - self[3][0] * m3.determinant() } #[inline] fn diagonal(&self) -> Vector4 { Vector4::new(self[0][0], self[1][1], self[2][2], self[3][3]) } fn invert(&self) -> Option> { let det = self.determinant(); if det.approx_eq(&S::zero()) { None } else { let inv_det = S::one() / det; let t = self.transpose(); let cf = |i, j| { let mat = match i { 0 => Matrix3::from_cols(t.y.truncate_n(j), t.z.truncate_n(j), t.w.truncate_n(j)), 1 => Matrix3::from_cols(t.x.truncate_n(j), t.z.truncate_n(j), t.w.truncate_n(j)), 2 => Matrix3::from_cols(t.x.truncate_n(j), t.y.truncate_n(j), t.w.truncate_n(j)), 3 => Matrix3::from_cols(t.x.truncate_n(j), t.y.truncate_n(j), t.z.truncate_n(j)), _ => panic!("out of range"), }; let sign = if (i + j) & 1 == 1 { -S::one() } else { S::one() }; mat.determinant() * sign * inv_det }; Some(Matrix4::new(cf(0, 0), cf(0, 1), cf(0, 2), cf(0, 3), cf(1, 0), cf(1, 1), cf(1, 2), cf(1, 3), cf(2, 0), cf(2, 1), cf(2, 2), cf(2, 3), cf(3, 0), cf(3, 1), cf(3, 2), cf(3, 3))) } } fn is_diagonal(&self) -> bool { self[0][1].approx_eq(&S::zero()) && self[0][2].approx_eq(&S::zero()) && self[0][3].approx_eq(&S::zero()) && self[1][0].approx_eq(&S::zero()) && self[1][2].approx_eq(&S::zero()) && self[1][3].approx_eq(&S::zero()) && self[2][0].approx_eq(&S::zero()) && self[2][1].approx_eq(&S::zero()) && self[2][3].approx_eq(&S::zero()) && self[3][0].approx_eq(&S::zero()) && self[3][1].approx_eq(&S::zero()) && self[3][2].approx_eq(&S::zero()) } fn is_symmetric(&self) -> bool { self[0][1].approx_eq(&self[1][0]) && self[0][2].approx_eq(&self[2][0]) && self[0][3].approx_eq(&self[3][0]) && self[1][0].approx_eq(&self[0][1]) && self[1][2].approx_eq(&self[2][1]) && self[1][3].approx_eq(&self[3][1]) && self[2][0].approx_eq(&self[0][2]) && self[2][1].approx_eq(&self[1][2]) && self[2][3].approx_eq(&self[3][2]) && self[3][0].approx_eq(&self[0][3]) && self[3][1].approx_eq(&self[1][3]) && self[3][2].approx_eq(&self[2][3]) } } impl ApproxEq for Matrix2 { type Epsilon = S; #[inline] fn approx_eq_eps(&self, other: &Matrix2, epsilon: &S) -> bool { self[0].approx_eq_eps(&other[0], epsilon) && self[1].approx_eq_eps(&other[1], epsilon) } } impl ApproxEq for Matrix3 { type Epsilon = S; #[inline] fn approx_eq_eps(&self, other: &Matrix3, epsilon: &S) -> bool { self[0].approx_eq_eps(&other[0], epsilon) && self[1].approx_eq_eps(&other[1], epsilon) && self[2].approx_eq_eps(&other[2], epsilon) } } impl ApproxEq for Matrix4 { type Epsilon = S; #[inline] fn approx_eq_eps(&self, other: &Matrix4, epsilon: &S) -> bool { self[0].approx_eq_eps(&other[0], epsilon) && self[1].approx_eq_eps(&other[1], epsilon) && self[2].approx_eq_eps(&other[2], epsilon) && self[3].approx_eq_eps(&other[3], epsilon) } } macro_rules! impl_operators { ($MatrixN:ident, $VectorN:ident { $($field:ident : $row_index:expr),+ }) => { impl_operator!( Neg for $MatrixN { fn neg(matrix) -> $MatrixN { $MatrixN { $($field: -matrix.$field),+ } } }); impl_operator!( Mul for $MatrixN { fn mul(matrix, scalar) -> $MatrixN { $MatrixN { $($field: matrix.$field * scalar),+ } } }); impl_operator!( Div for $MatrixN { fn div(matrix, scalar) -> $MatrixN { $MatrixN { $($field: matrix.$field / scalar),+ } } }); impl_operator!( Rem for $MatrixN { fn rem(matrix, scalar) -> $MatrixN { $MatrixN { $($field: matrix.$field % scalar),+ } } }); impl_assignment_operator!( MulAssign for $MatrixN { fn mul_assign(&mut self, scalar) { $(self.$field *= scalar);+ } }); impl_assignment_operator!( DivAssign for $MatrixN { fn div_assign(&mut self, scalar) { $(self.$field /= scalar);+ } }); impl_assignment_operator!( RemAssign for $MatrixN { fn rem_assign(&mut self, scalar) { $(self.$field %= scalar);+ } }); impl_operator!( Add<$MatrixN > for $MatrixN { fn add(lhs, rhs) -> $MatrixN { $MatrixN { $($field: lhs.$field + rhs.$field),+ } } }); impl_operator!( Sub<$MatrixN > for $MatrixN { fn sub(lhs, rhs) -> $MatrixN { $MatrixN { $($field: lhs.$field - rhs.$field),+ } } }); #[cfg(feature = "unstable")] impl> AddAssign<$MatrixN> for $MatrixN { fn add_assign(&mut self, other: $MatrixN) { $(self.$field += other.$field);+ } } #[cfg(feature = "unstable")] impl> SubAssign<$MatrixN> for $MatrixN { fn sub_assign(&mut self, other: $MatrixN) { $(self.$field -= other.$field);+ } } impl_operator!( Mul<$VectorN > for $MatrixN { fn mul(matrix, vector) -> $VectorN { $VectorN::new($(matrix.row($row_index).dot(vector.clone())),+) } }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); impl_scalar_ops!($MatrixN { $($field),+ }); } } macro_rules! impl_scalar_ops { ($MatrixN:ident<$S:ident> { $($field:ident),+ }) => { impl_operator!(Mul<$MatrixN<$S>> for $S { fn mul(scalar, matrix) -> $MatrixN<$S> { $MatrixN { $($field: scalar * matrix.$field),+ } } }); impl_operator!(Div<$MatrixN<$S>> for $S { fn div(scalar, matrix) -> $MatrixN<$S> { $MatrixN { $($field: scalar / matrix.$field),+ } } }); impl_operator!(Rem<$MatrixN<$S>> for $S { fn rem(scalar, matrix) -> $MatrixN<$S> { $MatrixN { $($field: scalar % matrix.$field),+ } } }); }; } impl_operators!(Matrix2, Vector2 { x: 0, y: 1 }); impl_operators!(Matrix3, Vector3 { x: 0, y: 1, z: 2 }); impl_operators!(Matrix4, Vector4 { x: 0, y: 1, z: 2, w: 3 }); impl_operator!( Mul > for Matrix2 { fn mul(lhs, rhs) -> Matrix2 { Matrix2::new(lhs.row(0).dot(rhs[0]), lhs.row(1).dot(rhs[0]), lhs.row(0).dot(rhs[1]), lhs.row(1).dot(rhs[1])) } }); impl_operator!( Mul > for Matrix3 { fn mul(lhs, rhs) -> Matrix3 { Matrix3::new(lhs.row(0).dot(rhs[0]), lhs.row(1).dot(rhs[0]), lhs.row(2).dot(rhs[0]), lhs.row(0).dot(rhs[1]), lhs.row(1).dot(rhs[1]), lhs.row(2).dot(rhs[1]), lhs.row(0).dot(rhs[2]), lhs.row(1).dot(rhs[2]), lhs.row(2).dot(rhs[2])) } }); // Using self.row(0).dot(other[0]) like the other matrix multiplies // causes the LLVM to miss identical loads and multiplies. This optimization // causes the code to be auto vectorized properly increasing the performance // around ~4 times. macro_rules! dot_matrix4 { ($A:expr, $B:expr, $I:expr, $J:expr) => { ($A[0][$I]) * ($B[$J][0]) + ($A[1][$I]) * ($B[$J][1]) + ($A[2][$I]) * ($B[$J][2]) + ($A[3][$I]) * ($B[$J][3]) }; } impl_operator!( Mul > for Matrix4 { fn mul(lhs, rhs) -> Matrix4 { Matrix4::new(dot_matrix4!(lhs, rhs, 0, 0), dot_matrix4!(lhs, rhs, 1, 0), dot_matrix4!(lhs, rhs, 2, 0), dot_matrix4!(lhs, rhs, 3, 0), dot_matrix4!(lhs, rhs, 0, 1), dot_matrix4!(lhs, rhs, 1, 1), dot_matrix4!(lhs, rhs, 2, 1), dot_matrix4!(lhs, rhs, 3, 1), dot_matrix4!(lhs, rhs, 0, 2), dot_matrix4!(lhs, rhs, 1, 2), dot_matrix4!(lhs, rhs, 2, 2), dot_matrix4!(lhs, rhs, 3, 2), dot_matrix4!(lhs, rhs, 0, 3), dot_matrix4!(lhs, rhs, 1, 3), dot_matrix4!(lhs, rhs, 2, 3), dot_matrix4!(lhs, rhs, 3, 3)) } }); macro_rules! index_operators { ($MatrixN:ident<$S:ident>, $n:expr, $Output:ty, $I:ty) => { impl<$S> Index<$I> for $MatrixN<$S> { type Output = $Output; #[inline] fn index<'a>(&'a self, i: $I) -> &'a $Output { let v: &[[$S; $n]; $n] = self.as_ref(); From::from(&v[i]) } } impl<$S> IndexMut<$I> for $MatrixN<$S> { #[inline] fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output { let v: &mut [[$S; $n]; $n] = self.as_mut(); From::from(&mut v[i]) } } } } index_operators!(Matrix2, 2, Vector2, usize); index_operators!(Matrix3, 3, Vector3, usize); index_operators!(Matrix4, 4, Vector4, usize); // index_operators!(Matrix2, 2, [Vector2], Range); // index_operators!(Matrix3, 3, [Vector3], Range); // index_operators!(Matrix4, 4, [Vector4], Range); // index_operators!(Matrix2, 2, [Vector2], RangeTo); // index_operators!(Matrix3, 3, [Vector3], RangeTo); // index_operators!(Matrix4, 4, [Vector4], RangeTo); // index_operators!(Matrix2, 2, [Vector2], RangeFrom); // index_operators!(Matrix3, 3, [Vector3], RangeFrom); // index_operators!(Matrix4, 4, [Vector4], RangeFrom); // index_operators!(Matrix2, 2, [Vector2], RangeFull); // index_operators!(Matrix3, 3, [Vector3], RangeFull); // index_operators!(Matrix4, 4, [Vector4], RangeFull); macro_rules! fixed_array_conversions { ($MatrixN:ident <$S:ident> { $($field:ident : $index:expr),+ }, $n:expr) => { impl<$S> Into<[[$S; $n]; $n]> for $MatrixN<$S> { #[inline] fn into(self) -> [[$S; $n]; $n] { match self { $MatrixN { $($field),+ } => [$($field.into()),+] } } } impl<$S> AsRef<[[$S; $n]; $n]> for $MatrixN<$S> { #[inline] fn as_ref(&self) -> &[[$S; $n]; $n] { unsafe { mem::transmute(self) } } } impl<$S> AsMut<[[$S; $n]; $n]> for $MatrixN<$S> { #[inline] fn as_mut(&mut self) -> &mut [[$S; $n]; $n] { unsafe { mem::transmute(self) } } } impl<$S: Copy> From<[[$S; $n]; $n]> for $MatrixN<$S> { #[inline] fn from(m: [[$S; $n]; $n]) -> $MatrixN<$S> { // We need to use a copy here because we can't pattern match on arrays yet $MatrixN { $($field: From::from(m[$index])),+ } } } impl<'a, $S> From<&'a [[$S; $n]; $n]> for &'a $MatrixN<$S> { #[inline] fn from(m: &'a [[$S; $n]; $n]) -> &'a $MatrixN<$S> { unsafe { mem::transmute(m) } } } impl<'a, $S> From<&'a mut [[$S; $n]; $n]> for &'a mut $MatrixN<$S> { #[inline] fn from(m: &'a mut [[$S; $n]; $n]) -> &'a mut $MatrixN<$S> { unsafe { mem::transmute(m) } } } // impl<$S> Into<[$S; ($n * $n)]> for $MatrixN<$S> { // #[inline] // fn into(self) -> [[$S; $n]; $n] { // // TODO: Not sure how to implement this... // unimplemented!() // } // } impl<$S> AsRef<[$S; ($n * $n)]> for $MatrixN<$S> { #[inline] fn as_ref(&self) -> &[$S; ($n * $n)] { unsafe { mem::transmute(self) } } } impl<$S> AsMut<[$S; ($n * $n)]> for $MatrixN<$S> { #[inline] fn as_mut(&mut self) -> &mut [$S; ($n * $n)] { unsafe { mem::transmute(self) } } } // impl<$S> From<[$S; ($n * $n)]> for $MatrixN<$S> { // #[inline] // fn from(m: [$S; ($n * $n)]) -> $MatrixN<$S> { // // TODO: Not sure how to implement this... // unimplemented!() // } // } impl<'a, $S> From<&'a [$S; ($n * $n)]> for &'a $MatrixN<$S> { #[inline] fn from(m: &'a [$S; ($n * $n)]) -> &'a $MatrixN<$S> { unsafe { mem::transmute(m) } } } impl<'a, $S> From<&'a mut [$S; ($n * $n)]> for &'a mut $MatrixN<$S> { #[inline] fn from(m: &'a mut [$S; ($n * $n)]) -> &'a mut $MatrixN<$S> { unsafe { mem::transmute(m) } } } } } fixed_array_conversions!(Matrix2 { x:0, y:1 }, 2); fixed_array_conversions!(Matrix3 { x:0, y:1, z:2 }, 3); fixed_array_conversions!(Matrix4 { x:0, y:1, z:2, w:3 }, 4); impl From> for Matrix3 { /// Clone the elements of a 2-dimensional matrix into the top-left corner /// of a 3-dimensional identity matrix. fn from(m: Matrix2) -> Matrix3 { Matrix3::new(m[0][0], m[0][1], S::zero(), m[1][0], m[1][1], S::zero(), S::zero(), S::zero(), S::one()) } } impl From> for Matrix4 { /// Clone the elements of a 2-dimensional matrix into the top-left corner /// of a 4-dimensional identity matrix. fn from(m: Matrix2) -> Matrix4 { Matrix4::new(m[0][0], m[0][1], S::zero(), S::zero(), m[1][0], m[1][1], S::zero(), S::zero(), S::zero(), S::zero(), S::one(), S::zero(), S::zero(), S::zero(), S::zero(), S::one()) } } impl From> for Matrix4 { /// Clone the elements of a 3-dimensional matrix into the top-left corner /// of a 4-dimensional identity matrix. fn from(m: Matrix3) -> Matrix4 { Matrix4::new(m[0][0], m[0][1], m[0][2], S::zero(), m[1][0], m[1][1], m[1][2], S::zero(), m[2][0], m[2][1], m[2][2], S::zero(), S::zero(), S::zero(), S::zero(), S::one()) } } impl From> for Quaternion { /// Convert the matrix to a quaternion fn from(mat: Matrix3) -> Quaternion { // http://www.cs.ucr.edu/~vbz/resources/quatut.pdf let trace = mat.trace(); let half: S = cast(0.5f64).unwrap(); if trace >= S::zero() { let s = (S::one() + trace).sqrt(); let w = half * s; let s = half / s; let x = (mat[1][2] - mat[2][1]) * s; let y = (mat[2][0] - mat[0][2]) * s; let z = (mat[0][1] - mat[1][0]) * s; Quaternion::new(w, x, y, z) } else if (mat[0][0] > mat[1][1]) && (mat[0][0] > mat[2][2]) { let s = ((mat[0][0] - mat[1][1] - mat[2][2]) + S::one()).sqrt(); let x = half * s; let s = half / s; let y = (mat[1][0] + mat[0][1]) * s; let z = (mat[0][2] + mat[2][0]) * s; let w = (mat[1][2] - mat[2][1]) * s; Quaternion::new(w, x, y, z) } else if mat[1][1] > mat[2][2] { let s = ((mat[1][1] - mat[0][0] - mat[2][2]) + S::one()).sqrt(); let y = half * s; let s = half / s; let z = (mat[2][1] + mat[1][2]) * s; let x = (mat[1][0] + mat[0][1]) * s; let w = (mat[2][0] - mat[0][2]) * s; Quaternion::new(w, x, y, z) } else { let s = ((mat[2][2] - mat[0][0] - mat[1][1]) + S::one()).sqrt(); let z = half * s; let s = half / s; let x = (mat[0][2] + mat[2][0]) * s; let y = (mat[2][1] + mat[1][2]) * s; let w = (mat[0][1] - mat[1][0]) * s; Quaternion::new(w, x, y, z) } } } impl fmt::Debug for Matrix2 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Matrix2 ")); <[[S; 2]; 2] as fmt::Debug>::fmt(self.as_ref(), f) } } impl fmt::Debug for Matrix3 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Matrix3 ")); <[[S; 3]; 3] as fmt::Debug>::fmt(self.as_ref(), f) } } impl fmt::Debug for Matrix4 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Matrix4 ")); <[[S; 4]; 4] as fmt::Debug>::fmt(self.as_ref(), f) } } impl Rand for Matrix2 { #[inline] fn rand(rng: &mut R) -> Matrix2 { Matrix2{ x: rng.gen(), y: rng.gen() } } } impl Rand for Matrix3 { #[inline] fn rand(rng: &mut R) -> Matrix3 { Matrix3{ x: rng.gen(), y: rng.gen(), z: rng.gen() } } } impl Rand for Matrix4 { #[inline] fn rand(rng: &mut R) -> Matrix4 { Matrix4{ x: rng.gen(), y: rng.gen(), z: rng.gen(), w: rng.gen() } } }