use core::cast::transmute; use core::cmp::Eq; use core::ptr::to_unsafe_ptr; use core::sys::size_of; use core::util::swap; use core::vec::raw::buf_as_slice; use std::cmp::{FuzzyEq, FUZZY_EPSILON}; use numeric::*; use numeric::number::Number; use numeric::number::Number::{zero,one}; use vec::{ Vec2, Vector2, MutableVector, NumericVector, MutableNumericVector, vec2, dvec2, }; use mat::{ Mat3, Mat4, Matrix, Matrix2, Matrix3, Matrix4, MutableMatrix, }; /** * A 2 x 2 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ #[deriving_eq] pub struct Mat2 { x: Vec2, y: Vec2 } impl + Add + Sub + Mul + Div + Neg> Matrix> for Mat2 { #[inline(always)] pure fn col(&self, i: uint) -> Vec2 { self[i] } #[inline(always)] pure fn row(&self, i: uint) -> Vec2 { Vector2::new(self[0][i], self[1][i]) } /** * Construct a 2 x 2 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 * +-----+-----+ * r0 | val | 0 | * +-----+-----+ * r1 | 0 | val | * +-----+-----+ * ~~~ */ #[inline(always)] static pure fn from_value(value: T) -> Mat2 { Matrix2::new(value, zero(), zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 1 | 0 | * +----+----+ * r1 | 0 | 1 | * +----+----+ * ~~~ */ #[inline(always)] static pure fn identity() -> Mat2 { Matrix2::new( one::(), zero::(), zero::(), one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 0 | 0 | * +----+----+ * r1 | 0 | 0 | * +----+----+ * ~~~ */ #[inline(always)] static pure fn zero() -> Mat2 { Matrix2::new(zero::(), zero::(), zero::(), zero::()) } #[inline(always)] pure fn mul_t(&self, value: T) -> Mat2 { Matrix2::from_cols(self[0].mul_t(value), self[1].mul_t(value)) } #[inline(always)] pure fn mul_v(&self, vec: &Vec2) -> Vec2 { Vector2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline(always)] pure fn add_m(&self, other: &Mat2) -> Mat2 { Matrix2::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1])) } #[inline(always)] pure fn sub_m(&self, other: &Mat2) -> Mat2 { Matrix2::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1])) } #[inline(always)] pure fn mul_m(&self, other: &Mat2) -> Mat2 { Matrix2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1))) } pure fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } pure fn determinant(&self) -> T { self[0][0] * self[1][1] - self[1][0] * self[0][1] } pure fn trace(&self) -> T { self[0][0] + self[1][1] } #[inline(always)] pure fn inverse(&self) -> Option> { let d = self.determinant(); if d.fuzzy_eq(&zero()) { None } else { Some(Matrix2::new( self[1][1]/d, -self[0][1]/d, -self[1][0]/d, self[0][0]/d)) } } #[inline(always)] pure fn transpose(&self) -> Mat2 { Matrix2::new(self[0][0], self[1][0], self[0][1], self[1][1]) } #[inline(always)] pure fn is_identity(&self) -> bool { self.fuzzy_eq(&Matrix::identity()) } #[inline(always)] pure fn is_diagonal(&self) -> bool { self[0][1].fuzzy_eq(&zero()) && self[1][0].fuzzy_eq(&zero()) } #[inline(always)] pure fn is_rotated(&self) -> bool { !self.fuzzy_eq(&Matrix::identity()) } #[inline(always)] pure fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[1][0].fuzzy_eq(&self[0][1]) } #[inline(always)] pure fn is_invertible(&self) -> bool { !self.determinant().fuzzy_eq(&zero()) } #[inline(always)] pure fn to_ptr(&self) -> *T { unsafe { transmute::<*Mat2, *T>( to_unsafe_ptr(self) ) } } } impl + Add + Sub + Mul + Div + Neg> MutableMatrix > for Mat2 { #[inline(always)] fn col_mut(&mut self, i: uint) -> &self/mut Vec2 { match i { 0 => &mut self.x, 1 => &mut self.y, _ => fail!(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { swap(&mut self.x, &mut self.y); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat2) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = Matrix::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = Matrix::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { &mut self.x.mul_self_t(&value); &mut self.y.mul_self_t(&value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat2) { &mut self.x.add_self_v(&other[0]); &mut self.y.add_self_v(&other[1]); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat2) { &mut self.x.sub_self_v(&other[0]); &mut self.y.sub_self_v(&other[1]); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { &mut swap(&mut self.x.index_mut(1), &mut self.y.index_mut(0)); &mut swap(&mut self.y.index_mut(0), &mut self.x.index_mut(1)); } } impl + Add + Sub + Mul + Div + Neg> Matrix2> for Mat2 { /** * Construct a 2 x 2 matrix * * # Arguments * * * `c0r0`, `c0r1` - the first column of the matrix * * `c1r0`, `c1r1` - the second column of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0r0 | c1r0 | * +------+------+ * r1 | c0r1 | c1r1 | * +------+------+ * ~~~ */ #[inline(always)] static pure fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { Matrix2::from_cols(Vector2::new::>(c0r0, c0r1), Vector2::new::>(c1r0, c1r1)) } /** * Construct a 2 x 2 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0.x | c1.x | * +------+------+ * r1 | c0.y | c1.y | * +------+------+ * ~~~ */ #[inline(always)] static pure fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: c0, y: c1 } } #[inline(always)] static pure fn from_angle(radians: T) -> Mat2 { let cos_theta = cos(radians); let sin_theta = sin(radians); Matrix2::new(cos_theta, -sin_theta, sin_theta, cos_theta) } /** * Returns the the matrix with an extra row and column added * ~~~ * c0 c1 c0 c1 c2 * +----+----+ +----+----+----+ * r0 | a | b | r0 | a | b | 0 | * +----+----+ +----+----+----+ * r1 | c | d | => r1 | c | d | 0 | * +----+----+ +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] pure fn to_mat3(&self) -> Mat3 { Matrix3::new(self[0][0], self[0][1], zero(), self[1][0], self[1][1], zero(), zero(), zero(), one()) } /** * Returns the the matrix with an extra two rows and columns added * ~~~ * c0 c1 c0 c1 c2 c3 * +----+----+ +----+----+----+----+ * r0 | a | b | r0 | a | b | 0 | 0 | * +----+----+ +----+----+----+----+ * r1 | c | d | => r1 | c | d | 0 | 0 | * +----+----+ +----+----+----+----+ * r2 | 0 | 0 | 1 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] pure fn to_mat4(&self) -> Mat4 { Matrix4::new(self[0][0], self[0][1], zero(), zero(), self[1][0], self[1][1], zero(), zero(), zero(), zero(), one(), zero(), zero(), zero(), zero(), one()) } } impl Index> for Mat2 { #[inline(always)] pure fn index(&self, i: uint) -> Vec2 { unsafe { do buf_as_slice( transmute::<*Mat2, *Vec2>( to_unsafe_ptr(self)), 2) |slice| { slice[i] } } } } impl + Add + Sub + Mul + Div + Neg> Neg> for Mat2 { #[inline(always)] pure fn neg(&self) -> Mat2 { Matrix2::from_cols(-self[0], -self[1]) } } impl> FuzzyEq for Mat2 { #[inline(always)] pure fn fuzzy_eq(&self, other: &Mat2) -> bool { self.fuzzy_eq_eps(other, &Number::from(FUZZY_EPSILON)) } #[inline(always)] pure fn fuzzy_eq_eps(&self, other: &Mat2, epsilon: &T) -> bool { self[0].fuzzy_eq_eps(&other[0], epsilon) && self[1].fuzzy_eq_eps(&other[1], epsilon) } } // GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification] // (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf). pub type mat2 = Mat2; // a 2×2 single-precision floating-point matrix pub type dmat2 = Mat2; // a 2×2 double-precision floating-point matrix // Static method wrappers for GLSL-style types impl mat2 { #[inline(always)] static pure fn new(c0r0: f32, c0r1: f32, c1r0: f32, c1r1: f32) -> mat2 { Matrix2::new(c0r0, c0r1, c1r0, c1r1) } #[inline(always)] static pure fn from_cols(c0: vec2, c1: vec2) -> mat2 { Matrix2::from_cols(c0, c1) } #[inline(always)] static pure fn from_value(v: f32) -> mat2 { Matrix::from_value(v) } #[inline(always)] static pure fn identity() -> mat2 { Matrix::identity() } #[inline(always)] static pure fn zero() -> mat2 { Matrix::zero() } #[inline(always)] static pure fn from_angle(radians: f32) -> mat2 { Matrix2::from_angle(radians) } #[inline(always)] static pure fn dim() -> uint { 2 } #[inline(always)] static pure fn rows() -> uint { 2 } #[inline(always)] static pure fn cols() -> uint { 2 } #[inline(always)] static pure fn size_of() -> uint { size_of::() } } impl dmat2 { #[inline(always)] static pure fn new(c0r0: f64, c0r1: f64, c1r0: f64, c1r1: f64) -> dmat2 { Matrix2::new(c0r0, c0r1, c1r0, c1r1) } #[inline(always)] static pure fn from_cols(c0: dvec2, c1: dvec2) -> dmat2 { Matrix2::from_cols(c0, c1) } #[inline(always)] static pure fn from_value(v: f64) -> dmat2 { Matrix::from_value(v) } #[inline(always)] static pure fn identity() -> dmat2 { Matrix::identity() } #[inline(always)] static pure fn zero() -> dmat2 { Matrix::zero() } #[inline(always)] static pure fn from_angle(radians: f64) -> dmat2 { Matrix2::from_angle(radians) } #[inline(always)] static pure fn dim() -> uint { 2 } #[inline(always)] static pure fn rows() -> uint { 2 } #[inline(always)] static pure fn cols() -> uint { 2 } #[inline(always)] static pure fn size_of() -> uint { size_of::() } }