// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::cast::transmute; use std::cmp::ApproxEq; use std::num::{Zero, One}; use vec::*; use quat::Quat; use num::NumAssign; /** * The base square matrix trait * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * `V` - The type of the row and column vectors. Should have components of a * floating point type and have the same number of dimensions as the * number of rows and columns in the matrix. */ pub trait BaseMat: Eq + Neg { /** * # Return value * * The column vector at `i` */ fn col<'a>(&'a self, i: uint) -> &'a V; /** * # Return value * * The row vector at `i` */ fn row(&self, i: uint) -> V; /** * Construct a diagonal matrix with the major diagonal set to `value` */ fn from_value(value: T) -> Self; /** * # Return value * * The identity matrix */ fn identity() -> Self; /** * # Return value * * A matrix with all elements set to zero */ fn zero() -> Self; /** * # Return value * * The scalar multiplication of this matrix and `value` */ fn mul_t(&self, value: T) -> Self; /** * # Return value * * The matrix vector product of the matrix and `vec` */ fn mul_v(&self, vec: &V) -> V; /** * # Return value * * The matrix addition of the matrix and `other` */ fn add_m(&self, other: &Self) -> Self; /** * # Return value * * The difference between the matrix and `other` */ fn sub_m(&self, other: &Self) -> Self; /** * # Return value * * The matrix product of the matrix and `other` */ fn mul_m(&self, other: &Self) -> Self; /** * # Return value * * The matrix dot product of the matrix and `other` */ fn dot(&self, other: &Self) -> T; /** * # Return value * * The determinant of the matrix */ fn determinant(&self) -> T; /** * # Return value * * The sum of the main diagonal of the matrix */ fn trace(&self) -> T; /** * Returns the inverse of the matrix * * # Return value * * * `Some(m)` - if the inversion was successful, where `m` is the inverted matrix * * `None` - if the inversion was unsuccessful (because the matrix was not invertable) */ fn inverse(&self) -> Option; /** * # Return value * * The transposed matrix */ fn transpose(&self) -> Self; /** * # Return value * * A mutable reference to the column at `i` */ fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut V; /** * Swap two columns of the matrix in place */ fn swap_cols(&mut self, a: uint, b: uint); /** * Swap two rows of the matrix in place */ fn swap_rows(&mut self, a: uint, b: uint); /** * Sets the matrix to `other` */ fn set(&mut self, other: &Self); /** * Sets the matrix to the identity matrix */ fn to_identity(&mut self); /** * Sets each element of the matrix to zero */ fn to_zero(&mut self); /** * Multiplies the matrix by a scalar */ fn mul_self_t(&mut self, value: T); /** * Add the matrix `other` to `self` */ fn add_self_m(&mut self, other: &Self); /** * Subtract the matrix `other` from `self` */ fn sub_self_m(&mut self, other: &Self); /** * Sets the matrix to its inverse * * # Failure * * Fails if the matrix is not invertable. Make sure you check with the * `is_invertible` method before you attempt this! */ fn invert_self(&mut self); /** * Sets the matrix to its transpose */ fn transpose_self(&mut self); /** * Check to see if the matrix is an identity matrix * * # Return value * * `true` if the matrix is approximately equal to the identity matrix */ fn is_identity(&self) -> bool; /** * Check to see if the matrix is diagonal * * # Return value * * `true` all the elements outside the main diagonal are approximately * equal to zero. */ fn is_diagonal(&self) -> bool; /** * Check to see if the matrix is rotated * * # Return value * * `true` if the matrix is not approximately equal to the identity matrix. */ fn is_rotated(&self) -> bool; /** * Check to see if the matrix is symmetric * * # Return value * * `true` if the matrix is approximately equal to its transpose). */ fn is_symmetric(&self) -> bool; /** * Check to see if the matrix is invertable * * # Return value * * `true` if the matrix is invertable */ fn is_invertible(&self) -> bool; /** * # Return value * * A pointer to the first element of the matrix */ fn to_ptr(&self) -> *T; } /** * A 2 x 2 matrix */ pub trait BaseMat2: BaseMat { fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Self; fn from_cols(c0: V, c1: V) -> Self; fn from_angle(radians: T) -> Self; fn to_mat3(&self) -> Mat3; fn to_mat4(&self) -> Mat4; } /** * A 3 x 3 matrix */ pub trait BaseMat3: BaseMat { fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Self; fn from_cols(c0: V, c1: V, c2: V) -> Self; fn from_angle_x(radians: T) -> Self; fn from_angle_y(radians: T) -> Self; fn from_angle_z(radians: T) -> Self; fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Self; fn from_angle_axis(radians: T, axis: &Vec3) -> Self; fn from_axes(x: V, y: V, z: V) -> Self; fn look_at(dir: &Vec3, up: &Vec3) -> Self; fn to_mat4(&self) -> Mat4; fn to_quat(&self) -> Quat; } /** * A 4 x 4 matrix */ pub trait BaseMat4: BaseMat { fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Self; fn from_cols(c0: V, c1: V, c2: V, c3: V) -> Self; } /** * A 2 x 2 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ #[deriving(Eq)] pub struct Mat2 { x: Vec2, y: Vec2 } impl BaseMat> for Mat2 { #[inline(always)] fn col<'a>(&'a self, i: uint) -> &'a Vec2 { unsafe { &'a transmute::<&'a Mat2, &'a [Vec2,..2]>(self)[i] } } #[inline(always)] fn row(&self, i: uint) -> Vec2 { BaseVec2::new(*self.col(0).index(i), *self.col(1).index(i)) } /** * Construct a 2 x 2 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 * +-----+-----+ * r0 | val | 0 | * +-----+-----+ * r1 | 0 | val | * +-----+-----+ * ~~~ */ #[inline(always)] fn from_value(value: T) -> Mat2 { BaseMat2::new(value, Zero::zero(), Zero::zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 1 | 0 | * +----+----+ * r1 | 0 | 1 | * +----+----+ * ~~~ */ #[inline(always)] fn identity() -> Mat2 { BaseMat2::new( One::one::(), Zero::zero::(), Zero::zero::(), One::one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 0 | 0 | * +----+----+ * r1 | 0 | 0 | * +----+----+ * ~~~ */ #[inline(always)] fn zero() -> Mat2 { BaseMat2::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat2 { BaseMat2::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec2) -> Vec2 { BaseVec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat2) -> Mat2 { BaseMat2::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1))) } #[inline(always)] fn sub_m(&self, other: &Mat2) -> Mat2 { BaseMat2::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1))) } #[inline(always)] fn mul_m(&self, other: &Mat2) -> Mat2 { BaseMat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1))) } fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { (*self.col(0).index(0)) * (*self.col(1).index(1)) - (*self.col(1).index(0)) * (*self.col(0).index(1)) } fn trace(&self) -> T { (*self.col(0).index(0)) + (*self.col(1).index(1)) } #[inline(always)] fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { Some(BaseMat2::new( self.col(1).index(1)/d, -self.col(0).index(1)/d, -self.col(1).index(0)/d, self.col(0).index(0)/d)) } } #[inline(always)] fn transpose(&self) -> Mat2 { BaseMat2::new(*self.col(0).index(0), *self.col(1).index(0), *self.col(0).index(1), *self.col(1).index(1)) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2 { unsafe { &'a mut transmute::<&'a mut Mat2, &'a mut [Vec2,..2]>(self)[i] } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat2) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.x.mul_self_t(value); self.y.mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat2) { self.x.add_self_v(other.col(0)); self.y.add_self_v(other.col(1)); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat2) { self.x.sub_self_v(other.col(0)); self.y.sub_self_v(other.col(1)); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { let tmp01 = *self.col(0).index(1); let tmp10 = *self.col(1).index(0); *self.col_mut(0).index_mut(1) = *self.col(1).index(0); *self.col_mut(1).index_mut(0) = *self.col(0).index(1); *self.col_mut(1).index_mut(0) = tmp01; *self.col_mut(0).index_mut(1) = tmp10; } #[inline(always)] fn is_identity(&self) -> bool { self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self.col(0).index(1).approx_eq(&Zero::zero()) && self.col(1).index(0).approx_eq(&Zero::zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self.col(0).index(1).approx_eq(self.col(1).index(0)) && self.col(1).index(0).approx_eq(self.col(0).index(1)) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { transmute(self) } } } impl BaseMat2> for Mat2 { /** * Construct a 2 x 2 matrix * * # Arguments * * * `c0r0`, `c0r1` - the first column of the matrix * * `c1r0`, `c1r1` - the second column of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0r0 | c1r0 | * +------+------+ * r1 | c0r1 | c1r1 | * +------+------+ * ~~~ */ #[inline(always)] fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { BaseMat2::from_cols(BaseVec2::new::>(c0r0, c0r1), BaseVec2::new::>(c1r0, c1r1)) } /** * Construct a 2 x 2 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0.x | c1.x | * +------+------+ * r1 | c0.y | c1.y | * +------+------+ * ~~~ */ #[inline(always)] fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: c0, y: c1 } } #[inline(always)] fn from_angle(radians: T) -> Mat2 { let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat2::new(cos_theta, -sin_theta, sin_theta, cos_theta) } /** * Returns the the matrix with an extra row and column added * ~~~ * c0 c1 c0 c1 c2 * +----+----+ +----+----+----+ * r0 | a | b | r0 | a | b | 0 | * +----+----+ +----+----+----+ * r1 | c | d | => r1 | c | d | 0 | * +----+----+ +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] fn to_mat3(&self) -> Mat3 { BaseMat3::new(*self.col(0).index(0), *self.col(0).index(1), Zero::zero(), *self.col(1).index(0), *self.col(1).index(1), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /** * Returns the the matrix with an extra two rows and columns added * ~~~ * c0 c1 c0 c1 c2 c3 * +----+----+ +----+----+----+----+ * r0 | a | b | r0 | a | b | 0 | 0 | * +----+----+ +----+----+----+----+ * r1 | c | d | => r1 | c | d | 0 | 0 | * +----+----+ +----+----+----+----+ * r2 | 0 | 0 | 1 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn to_mat4(&self) -> Mat4 { BaseMat4::new(*self.col(0).index(0), *self.col(0).index(1), Zero::zero(), Zero::zero(), *self.col(1).index(0), *self.col(1).index(1), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one(), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } } impl Neg> for Mat2 { #[inline(always)] fn neg(&self) -> Mat2 { BaseMat2::from_cols(-self.col(0), -self.col(1)) } } impl ApproxEq for Mat2 { #[inline(always)] fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline(always)] fn approx_eq(&self, other: &Mat2) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &Mat2, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) } } macro_rules! mat2_type( ($name:ident <$T:ty, $V:ty>) => ( pub mod $name { use vec::*; use super::*; #[inline(always)] pub fn new(c0r0: $T, c0r1: $T, c1r0: $T, c1r1: $T) -> $name { BaseMat2::new(c0r0, c0r1, c1r0, c1r1) } #[inline(always)] pub fn from_cols(c0: $V, c1: $V) -> $name { BaseMat2::from_cols(c0, c1) } #[inline(always)] pub fn from_value(v: $T) -> $name { BaseMat::from_value(v) } #[inline(always)] pub fn identity() -> $name { BaseMat::identity() } #[inline(always)] pub fn zero() -> $name { BaseMat::zero() } #[inline(always)] pub fn from_angle(radians: $T) -> $name { BaseMat2::from_angle(radians) } #[inline(always)] pub fn dim() -> uint { 2 } #[inline(always)] pub fn rows() -> uint { 2 } #[inline(always)] pub fn cols() -> uint { 2 } #[inline(always)] pub fn size_of() -> uint { sys::size_of::<$name>() } } ) ) // GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification] // (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf). // a 2×2 single-precision floating-point matrix pub type mat2 = Mat2; // a 2×2 double-precision floating-point matrix pub type dmat2 = Mat2; mat2_type!(mat2) mat2_type!(dmat2) // Rust-style type aliases pub type Mat2f = Mat2; pub type Mat2f32 = Mat2; pub type Mat2f64 = Mat2; mat2_type!(Mat2f) mat2_type!(Mat2f32) mat2_type!(Mat2f64) /** * A 3 x 3 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ #[deriving(Eq)] pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } impl BaseMat> for Mat3 { #[inline(always)] fn col<'a>(&'a self, i: uint) -> &'a Vec3 { unsafe { &'a transmute::<&'a Mat3, &'a [Vec3,..3]>(self)[i] } } #[inline(always)] fn row(&self, i: uint) -> Vec3 { BaseVec3::new(*self.col(0).index(i), *self.col(1).index(i), *self.col(2).index(i)) } /** * Construct a 3 x 3 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 * +-----+-----+-----+ * r0 | val | 0 | 0 | * +-----+-----+-----+ * r1 | 0 | val | 0 | * +-----+-----+-----+ * r2 | 0 | 0 | val | * +-----+-----+-----+ * ~~~ */ #[inline(always)] fn from_value(value: T) -> Mat3 { BaseMat3::new(value, Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 1 | 0 | 0 | * +----+----+----+ * r1 | 0 | 1 | 0 | * +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] fn identity() -> Mat3 { BaseMat3::new(One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 0 | 0 | 0 | * +----+----+----+ * r1 | 0 | 0 | 0 | * +----+----+----+ * r2 | 0 | 0 | 0 | * +----+----+----+ * ~~~ */ #[inline(always)] fn zero() -> Mat3 { BaseMat3::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat3 { BaseMat3::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value), self.col(2).mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec3) -> Vec3 { BaseVec3::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat3) -> Mat3 { BaseMat3::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1)), self.col(2).add_v(other.col(2))) } #[inline(always)] fn sub_m(&self, other: &Mat3) -> Mat3 { BaseMat3::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1)), self.col(2).sub_v(other.col(2))) } #[inline(always)] fn mul_m(&self, other: &Mat3) -> Mat3 { BaseMat3::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(2).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)), self.row(2).dot(other.col(1)), self.row(0).dot(other.col(2)), self.row(1).dot(other.col(2)), self.row(2).dot(other.col(2))) } fn dot(&self, other: &Mat3) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { self.col(0).dot(&self.col(1).cross(self.col(2))) } fn trace(&self) -> T { *self.col(0).index(0) + *self.col(1).index(1) + *self.col(2).index(2) } // #[inline(always)] fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { let m: Mat3 = BaseMat3::from_cols(self.col(1).cross(self.col(2)).div_t(d), self.col(2).cross(self.col(0)).div_t(d), self.col(0).cross(self.col(1)).div_t(d)); Some(m.transpose()) } } #[inline(always)] fn transpose(&self) -> Mat3 { BaseMat3::new(*self.col(0).index(0), *self.col(1).index(0), *self.col(2).index(0), *self.col(0).index(1), *self.col(1).index(1), *self.col(2).index(1), *self.col(0).index(2), *self.col(1).index(2), *self.col(2).index(2)) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3 { unsafe { &'a mut transmute::<&'a mut Mat3, &'a mut [Vec3,..3]>(self)[i] } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat3) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat3) { self.col_mut(0).add_self_v(other.col(0)); self.col_mut(1).add_self_v(other.col(1)); self.col_mut(2).add_self_v(other.col(2)); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat3) { self.col_mut(0).sub_self_v(other.col(0)); self.col_mut(1).sub_self_v(other.col(1)); self.col_mut(2).sub_self_v(other.col(2)); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { let tmp01 = *self.col(0).index(1); let tmp02 = *self.col(0).index(2); let tmp10 = *self.col(1).index(0); let tmp12 = *self.col(1).index(2); let tmp20 = *self.col(2).index(0); let tmp21 = *self.col(2).index(1); *self.col_mut(0).index_mut(1) = *self.col(1).index(0); *self.col_mut(0).index_mut(2) = *self.col(2).index(0); *self.col_mut(1).index_mut(0) = *self.col(0).index(1); *self.col_mut(1).index_mut(2) = *self.col(2).index(1); *self.col_mut(2).index_mut(0) = *self.col(0).index(2); *self.col_mut(2).index_mut(1) = *self.col(1).index(2); *self.col_mut(1).index_mut(0) = tmp01; *self.col_mut(2).index_mut(0) = tmp02; *self.col_mut(0).index_mut(1) = tmp10; *self.col_mut(2).index_mut(1) = tmp12; *self.col_mut(0).index_mut(2) = tmp20; *self.col_mut(1).index_mut(2) = tmp21; } #[inline(always)] fn is_identity(&self) -> bool { self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self.col(0).index(1).approx_eq(&Zero::zero()) && self.col(0).index(2).approx_eq(&Zero::zero()) && self.col(1).index(0).approx_eq(&Zero::zero()) && self.col(1).index(2).approx_eq(&Zero::zero()) && self.col(2).index(0).approx_eq(&Zero::zero()) && self.col(2).index(1).approx_eq(&Zero::zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self.col(0).index(1).approx_eq(self.col(1).index(0)) && self.col(0).index(2).approx_eq(self.col(2).index(0)) && self.col(1).index(0).approx_eq(self.col(0).index(1)) && self.col(1).index(2).approx_eq(self.col(2).index(1)) && self.col(2).index(0).approx_eq(self.col(0).index(2)) && self.col(2).index(1).approx_eq(self.col(1).index(2)) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { transmute(self) } } } impl BaseMat3> for Mat3 { /** * Construct a 3 x 3 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | * +------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | * +------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | * +------+------+------+ * ~~~ */ #[inline(always)] fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Mat3 { BaseMat3::from_cols(BaseVec3::new::>(c0r0, c0r1, c0r2), BaseVec3::new::>(c1r0, c1r1, c1r2), BaseVec3::new::>(c2r0, c2r1, c2r2)) } /** * Construct a 3 x 3 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0.x | c1.x | c2.x | * +------+------+------+ * r1 | c0.y | c1.y | c2.y | * +------+------+------+ * r2 | c0.z | c1.z | c2.z | * +------+------+------+ * ~~~ */ #[inline(always)] fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { Mat3 { x: c0, y: c1, z: c2 } } /** * Construct a matrix from an angular rotation around the `x` axis */ #[inline(always)] fn from_angle_x(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( One::one(), Zero::zero(), Zero::zero(), Zero::zero(), cos_theta, sin_theta, Zero::zero(), -sin_theta, cos_theta) } /** * Construct a matrix from an angular rotation around the `y` axis */ #[inline(always)] fn from_angle_y(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( cos_theta, Zero::zero(), -sin_theta, Zero::zero(), One::one(), Zero::zero(), sin_theta, Zero::zero(), cos_theta) } /** * Construct a matrix from an angular rotation around the `z` axis */ #[inline(always)] fn from_angle_z(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( cos_theta, sin_theta, Zero::zero(), -sin_theta, cos_theta, Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /** * Construct a matrix from Euler angles * * # Arguments * * * `theta_x` - the angular rotation around the `x` axis (pitch) * * `theta_y` - the angular rotation around the `y` axis (yaw) * * `theta_z` - the angular rotation around the `z` axis (roll) */ #[inline(always)] fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations let cx = radians_x.cos(); let sx = radians_x.sin(); let cy = radians_y.cos(); let sy = radians_y.sin(); let cz = radians_z.cos(); let sz = radians_z.sin(); BaseMat3::new( cy*cz, cy*sz, -sy, -cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy, sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy) } /** * Construct a matrix from an axis and an angular rotation */ #[inline(always)] fn from_angle_axis(radians: T, axis: &Vec3) -> Mat3 { let c = radians.cos(); let s = radians.sin(); let _1_c = One::one::() - c; let x = axis.x; let y = axis.y; let z = axis.z; BaseMat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y, _1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x, _1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c) } #[inline(always)] fn from_axes(x: Vec3, y: Vec3, z: Vec3) -> Mat3 { BaseMat3::from_cols(x, y, z) } #[inline(always)] fn look_at(dir: &Vec3, up: &Vec3) -> Mat3 { let dir_ = dir.normalize(); let side = dir_.cross(&up.normalize()); let up_ = side.cross(&dir_).normalize(); BaseMat3::from_axes(up_, side, dir_) } /** * Returns the the matrix with an extra row and column added * ~~~ * c0 c1 c2 c0 c1 c2 c3 * +----+----+----+ +----+----+----+----+ * r0 | a | b | c | r0 | a | b | c | 0 | * +----+----+----+ +----+----+----+----+ * r1 | d | e | f | => r1 | d | e | f | 0 | * +----+----+----+ +----+----+----+----+ * r2 | g | h | i | r2 | g | h | i | 0 | * +----+----+----+ +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn to_mat4(&self) -> Mat4 { BaseMat4::new(*self.col(0).index(0), *self.col(0).index(1), *self.col(0).index(2), Zero::zero(), *self.col(1).index(0), *self.col(1).index(1), *self.col(1).index(2), Zero::zero(), *self.col(2).index(0), *self.col(2).index(1), *self.col(2).index(2), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /** * Convert the matrix to a quaternion */ #[inline(always)] fn to_quat(&self) -> Quat { // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf let mut s; let w, x, y, z; let trace = self.trace(); let _1: T = num::cast(1.0); let half: T = num::cast(0.5); cond! ( (trace >= Zero::zero()) { s = (_1 + trace).sqrt(); w = half * s; s = half / s; x = (*self.col(1).index(2) - *self.col(2).index(1)) * s; y = (*self.col(2).index(0) - *self.col(0).index(2)) * s; z = (*self.col(0).index(1) - *self.col(1).index(0)) * s; } ((*self.col(0).index(0) > *self.col(1).index(1)) && (*self.col(0).index(0) > *self.col(2).index(2))) { s = (half + (*self.col(0).index(0) - *self.col(1).index(1) - *self.col(2).index(2))).sqrt(); w = half * s; s = half / s; x = (*self.col(0).index(1) - *self.col(1).index(0)) * s; y = (*self.col(2).index(0) - *self.col(0).index(2)) * s; z = (*self.col(1).index(2) - *self.col(2).index(1)) * s; } (*self.col(1).index(1) > *self.col(2).index(2)) { s = (half + (*self.col(1).index(1) - *self.col(0).index(0) - *self.col(2).index(2))).sqrt(); w = half * s; s = half / s; x = (*self.col(0).index(1) - *self.col(1).index(0)) * s; y = (*self.col(1).index(2) - *self.col(2).index(1)) * s; z = (*self.col(2).index(0) - *self.col(0).index(2)) * s; } _ { s = (half + (*self.col(2).index(2) - *self.col(0).index(0) - *self.col(1).index(1))).sqrt(); w = half * s; s = half / s; x = (*self.col(2).index(0) - *self.col(0).index(2)) * s; y = (*self.col(1).index(2) - *self.col(2).index(1)) * s; z = (*self.col(0).index(1) - *self.col(1).index(0)) * s; } ) Quat::new(w, x, y, z) } } impl Neg> for Mat3 { #[inline(always)] fn neg(&self) -> Mat3 { BaseMat3::from_cols(-self.col(0), -self.col(1), -self.col(2)) } } impl ApproxEq for Mat3 { #[inline(always)] fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline(always)] fn approx_eq(&self, other: &Mat3) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &Mat3, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) && self.col(2).approx_eq_eps(other.col(2), epsilon) } } macro_rules! mat3_type( ($name:ident <$T:ty, $V:ty>) => ( pub mod $name { use vec::*; use super::*; #[inline(always)] pub fn new(c0r0: $T, c0r1: $T, c0r2: $T, c1r0: $T, c1r1: $T, c1r2: $T, c2r0: $T, c2r1: $T, c2r2: $T) -> $name { BaseMat3::new(c0r0, c0r1, c0r2, c1r0, c1r1, c1r2, c2r0, c2r1, c2r2) } #[inline(always)] pub fn from_cols(c0: $V, c1: $V, c2: $V) -> $name { BaseMat3::from_cols(c0, c1, c2) } #[inline(always)] pub fn from_value(v: $T) -> $name { BaseMat::from_value(v) } #[inline(always)] pub fn identity() -> $name { BaseMat::identity() } #[inline(always)] pub fn zero() -> $name { BaseMat::zero() } #[inline(always)] pub fn from_angle_x(radians: $T) -> $name { BaseMat3::from_angle_x(radians) } #[inline(always)] pub fn from_angle_y(radians: $T) -> $name { BaseMat3::from_angle_y(radians) } #[inline(always)] pub fn from_angle_z(radians: $T) -> $name { BaseMat3::from_angle_z(radians) } #[inline(always)] pub fn from_angle_xyz(radians_x: $T, radians_y: $T, radians_z: $T) -> $name { BaseMat3::from_angle_xyz(radians_x, radians_y, radians_z) } #[inline(always)] pub fn from_angle_axis(radians: $T, axis: &$V) -> $name { BaseMat3::from_angle_axis(radians, axis) } #[inline(always)] pub fn from_axes(x: $V, y: $V, z: $V) -> $name { BaseMat3::from_axes(x, y, z) } #[inline(always)] pub fn look_at(dir: &$V, up: &$V) -> $name { BaseMat3::look_at(dir, up) } #[inline(always)] pub fn dim() -> uint { 3 } #[inline(always)] pub fn rows() -> uint { 3 } #[inline(always)] pub fn cols() -> uint { 3 } #[inline(always)] pub fn size_of() -> uint { sys::size_of::<$name>() } } ) ) // a 3×3 single-precision floating-point matrix pub type mat3 = Mat3; // a 3×3 double-precision floating-point matrix pub type dmat3 = Mat3; mat3_type!(mat3) mat3_type!(dmat3) // Rust-style type aliases pub type Mat3f = Mat3; pub type Mat3f32 = Mat3; pub type Mat3f64 = Mat3; mat3_type!(Mat3f) mat3_type!(Mat3f32) mat3_type!(Mat3f64) /** * A 4 x 4 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix * * `w` - the fourth column vector of the matrix */ #[deriving(Eq)] pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4 } impl BaseMat> for Mat4 { #[inline(always)] fn col<'a>(&'a self, i: uint) -> &'a Vec4 { unsafe { &'a transmute::<&'a Mat4, &'a [Vec4,..4]>(self)[i] } } #[inline(always)] fn row(&self, i: uint) -> Vec4 { BaseVec4::new(*self.col(0).index(i), *self.col(1).index(i), *self.col(2).index(i), *self.col(3).index(i)) } /** * Construct a 4 x 4 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 c3 * +-----+-----+-----+-----+ * r0 | val | 0 | 0 | 0 | * +-----+-----+-----+-----+ * r1 | 0 | val | 0 | 0 | * +-----+-----+-----+-----+ * r2 | 0 | 0 | val | 0 | * +-----+-----+-----+-----+ * r3 | 0 | 0 | 0 | val | * +-----+-----+-----+-----+ * ~~~ */ #[inline(always)] fn from_value(value: T) -> Mat4 { BaseMat4::new(value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 c3 * +----+----+----+----+ * r0 | 1 | 0 | 0 | 0 | * +----+----+----+----+ * r1 | 0 | 1 | 0 | 0 | * +----+----+----+----+ * r2 | 0 | 0 | 1 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn identity() -> Mat4 { BaseMat4::new(One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 c3 * +----+----+----+----+ * r0 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r1 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r2 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn zero() -> Mat4 { BaseMat4::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat4 { BaseMat4::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value), self.col(2).mul_t(value), self.col(3).mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec4) -> Vec4 { BaseVec4::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec), self.row(3).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat4) -> Mat4 { BaseMat4::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1)), self.col(2).add_v(other.col(2)), self.col(3).add_v(other.col(3))) } #[inline(always)] fn sub_m(&self, other: &Mat4) -> Mat4 { BaseMat4::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1)), self.col(2).sub_v(other.col(2)), self.col(3).sub_v(other.col(3))) } #[inline(always)] fn mul_m(&self, other: &Mat4) -> Mat4 { BaseMat4::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(2).dot(other.col(0)), self.row(3).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)), self.row(2).dot(other.col(1)), self.row(3).dot(other.col(1)), self.row(0).dot(other.col(2)), self.row(1).dot(other.col(2)), self.row(2).dot(other.col(2)), self.row(3).dot(other.col(2)), self.row(0).dot(other.col(3)), self.row(1).dot(other.col(3)), self.row(2).dot(other.col(3)), self.row(3).dot(other.col(3))) } fn dot(&self, other: &Mat4) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { let m0: Mat3 = BaseMat3::new(*self.col(1).index(1), *self.col(2).index(1), *self.col(3).index(1), *self.col(1).index(2), *self.col(2).index(2), *self.col(3).index(2), *self.col(1).index(3), *self.col(2).index(3), *self.col(3).index(3)); let m1: Mat3 = BaseMat3::new(*self.col(0).index(1), *self.col(2).index(1), *self.col(3).index(1), *self.col(0).index(2), *self.col(2).index(2), *self.col(3).index(2), *self.col(0).index(3), *self.col(2).index(3), *self.col(3).index(3)); let m2: Mat3 = BaseMat3::new(*self.col(0).index(1), *self.col(1).index(1), *self.col(3).index(1), *self.col(0).index(2), *self.col(1).index(2), *self.col(3).index(2), *self.col(0).index(3), *self.col(1).index(3), *self.col(3).index(3)); let m3: Mat3 = BaseMat3::new(*self.col(0).index(1), *self.col(1).index(1), *self.col(2).index(1), *self.col(0).index(2), *self.col(1).index(2), *self.col(2).index(2), *self.col(0).index(3), *self.col(1).index(3), *self.col(2).index(3)); self.col(0).index(0) * m0.determinant() - self.col(1).index(0) * m1.determinant() + self.col(2).index(0) * m2.determinant() - self.col(3).index(0) * m3.determinant() } fn trace(&self) -> T { *self.col(0).index(0) + *self.col(1).index(1) + *self.col(2).index(2) + *self.col(3).index(3) } fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { // Gauss Jordan Elimination with partial pivoting // So take this matrix, A, augmented with the identity // and essentially reduce [A|I] let mut A = *self; let mut I: Mat4 = BaseMat::identity(); for uint::range(0, 4) |j| { // Find largest element in col j let mut i1 = j; for uint::range(j + 1, 4) |i| { if A.col(j).index(i).abs() > A.col(j).index(i1).abs() { i1 = i; } } // Swap columns i1 and j in A and I to // put pivot on diagonal A.swap_cols(i1, j); I.swap_cols(i1, j); // Scale col j to have a unit diagonal let ajj = *A.col(j).index(j); I.col_mut(j).div_self_t(ajj); A.col_mut(j).div_self_t(ajj); // Eliminate off-diagonal elems in col j of A, // doing identical ops to I for uint::range(0, 4) |i| { if i != j { let ij_mul_aij = I.col(j).mul_t(*A.col(i).index(j)); let aj_mul_aij = A.col(j).mul_t(*A.col(i).index(j)); I.col_mut(i).sub_self_v(&ij_mul_aij); A.col_mut(i).sub_self_v(&aj_mul_aij); } } } Some(I) } } #[inline(always)] fn transpose(&self) -> Mat4 { BaseMat4::new(*self.col(0).index(0), *self.col(1).index(0), *self.col(2).index(0), *self.col(3).index(0), *self.col(0).index(1), *self.col(1).index(1), *self.col(2).index(1), *self.col(3).index(1), *self.col(0).index(2), *self.col(1).index(2), *self.col(2).index(2), *self.col(3).index(2), *self.col(0).index(3), *self.col(1).index(3), *self.col(2).index(3), *self.col(3).index(3)) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4 { unsafe { &'a mut transmute::<&'a mut Mat4, &'a mut [Vec4,..4]>(self)[i] } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); self.w.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat4) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); self.col_mut(3).mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat4) { self.col_mut(0).add_self_v(other.col(0)); self.col_mut(1).add_self_v(other.col(1)); self.col_mut(2).add_self_v(other.col(2)); self.col_mut(3).add_self_v(other.col(3)); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat4) { self.col_mut(0).sub_self_v(other.col(0)); self.col_mut(1).sub_self_v(other.col(1)); self.col_mut(2).sub_self_v(other.col(2)); self.col_mut(3).sub_self_v(other.col(3)); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { let tmp01 = *self.col(0).index(1); let tmp02 = *self.col(0).index(2); let tmp03 = *self.col(0).index(3); let tmp10 = *self.col(1).index(0); let tmp12 = *self.col(1).index(2); let tmp13 = *self.col(1).index(3); let tmp20 = *self.col(2).index(0); let tmp21 = *self.col(2).index(1); let tmp23 = *self.col(2).index(3); let tmp30 = *self.col(3).index(0); let tmp31 = *self.col(3).index(1); let tmp32 = *self.col(3).index(2); *self.col_mut(0).index_mut(1) = *self.col(1).index(0); *self.col_mut(0).index_mut(2) = *self.col(2).index(0); *self.col_mut(0).index_mut(3) = *self.col(3).index(0); *self.col_mut(1).index_mut(0) = *self.col(0).index(1); *self.col_mut(1).index_mut(2) = *self.col(2).index(1); *self.col_mut(1).index_mut(3) = *self.col(3).index(1); *self.col_mut(2).index_mut(0) = *self.col(0).index(2); *self.col_mut(2).index_mut(1) = *self.col(1).index(2); *self.col_mut(2).index_mut(3) = *self.col(3).index(2); *self.col_mut(3).index_mut(0) = *self.col(0).index(3); *self.col_mut(3).index_mut(1) = *self.col(1).index(3); *self.col_mut(3).index_mut(2) = *self.col(2).index(3); *self.col_mut(1).index_mut(0) = tmp01; *self.col_mut(2).index_mut(0) = tmp02; *self.col_mut(3).index_mut(0) = tmp03; *self.col_mut(0).index_mut(1) = tmp10; *self.col_mut(2).index_mut(1) = tmp12; *self.col_mut(3).index_mut(1) = tmp13; *self.col_mut(0).index_mut(2) = tmp20; *self.col_mut(1).index_mut(2) = tmp21; *self.col_mut(3).index_mut(2) = tmp23; *self.col_mut(0).index_mut(3) = tmp30; *self.col_mut(1).index_mut(3) = tmp31; *self.col_mut(2).index_mut(3) = tmp32; } #[inline(always)] fn is_identity(&self) -> bool { self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self.col(0).index(1).approx_eq(&Zero::zero()) && self.col(0).index(2).approx_eq(&Zero::zero()) && self.col(0).index(3).approx_eq(&Zero::zero()) && self.col(1).index(0).approx_eq(&Zero::zero()) && self.col(1).index(2).approx_eq(&Zero::zero()) && self.col(1).index(3).approx_eq(&Zero::zero()) && self.col(2).index(0).approx_eq(&Zero::zero()) && self.col(2).index(1).approx_eq(&Zero::zero()) && self.col(2).index(3).approx_eq(&Zero::zero()) && self.col(3).index(0).approx_eq(&Zero::zero()) && self.col(3).index(1).approx_eq(&Zero::zero()) && self.col(3).index(2).approx_eq(&Zero::zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self.col(0).index(1).approx_eq(self.col(1).index(0)) && self.col(0).index(2).approx_eq(self.col(2).index(0)) && self.col(0).index(3).approx_eq(self.col(3).index(0)) && self.col(1).index(0).approx_eq(self.col(0).index(1)) && self.col(1).index(2).approx_eq(self.col(2).index(1)) && self.col(1).index(3).approx_eq(self.col(3).index(1)) && self.col(2).index(0).approx_eq(self.col(0).index(2)) && self.col(2).index(1).approx_eq(self.col(1).index(2)) && self.col(2).index(3).approx_eq(self.col(3).index(2)) && self.col(3).index(0).approx_eq(self.col(0).index(3)) && self.col(3).index(1).approx_eq(self.col(1).index(3)) && self.col(3).index(2).approx_eq(self.col(2).index(3)) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { transmute(self) } } } impl BaseMat4> for Mat4 { /** * Construct a 4 x 4 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix * * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix * * ~~~ * c0 c1 c2 c3 * +------+------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | c3r0 | * +------+------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | c3r1 | * +------+------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | c3r2 | * +------+------+------+------+ * r3 | c0r3 | c1r3 | c2r3 | c3r3 | * +------+------+------+------+ * ~~~ */ #[inline(always)] fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { BaseMat4::from_cols(BaseVec4::new::>(c0r0, c0r1, c0r2, c0r3), BaseVec4::new::>(c1r0, c1r1, c1r2, c1r3), BaseVec4::new::>(c2r0, c2r1, c2r2, c2r3), BaseVec4::new::>(c3r0, c3r1, c3r2, c3r3)) } /** * Construct a 4 x 4 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * `c3` - the fourth column vector of the matrix * * ~~~ * c0 c1 c2 c3 * +------+------+------+------+ * r0 | c0.x | c1.x | c2.x | c3.x | * +------+------+------+------+ * r1 | c0.y | c1.y | c2.y | c3.y | * +------+------+------+------+ * r2 | c0.z | c1.z | c2.z | c3.z | * +------+------+------+------+ * r3 | c0.w | c1.w | c2.w | c3.w | * +------+------+------+------+ * ~~~ */ #[inline(always)] fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { Mat4 { x: c0, y: c1, z: c2, w: c3 } } } impl Neg> for Mat4 { #[inline(always)] fn neg(&self) -> Mat4 { BaseMat4::from_cols(-self.col(0), -self.col(1), -self.col(2), -self.col(3)) } } impl ApproxEq for Mat4 { #[inline(always)] fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline(always)] fn approx_eq(&self, other: &Mat4) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &Mat4, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) && self.col(2).approx_eq_eps(other.col(2), epsilon) && self.col(3).approx_eq_eps(other.col(3), epsilon) } } macro_rules! mat4_type( ($name:ident <$T:ty, $V:ty>) => ( pub mod $name { use vec::*; use super::*; #[inline(always)] pub fn new(c0r0: $T, c0r1: $T, c0r2: $T, c0r3: $T, c1r0: $T, c1r1: $T, c1r2: $T, c1r3: $T, c2r0: $T, c2r1: $T, c2r2: $T, c2r3: $T, c3r0: $T, c3r1: $T, c3r2: $T, c3r3: $T) -> $name { BaseMat4::new(c0r0, c0r1, c0r2, c0r3, c1r0, c1r1, c1r2, c1r3, c2r0, c2r1, c2r2, c2r3, c3r0, c3r1, c3r2, c3r3) } #[inline(always)] pub fn from_cols(c0: $V, c1: $V, c2: $V, c3: $V) -> $name { BaseMat4::from_cols(c0, c1, c2, c3) } #[inline(always)] pub fn from_value(v: $T) -> $name { BaseMat::from_value(v) } #[inline(always)] pub fn identity() -> $name { BaseMat::identity() } #[inline(always)] pub fn zero() -> $name { BaseMat::zero() } #[inline(always)] pub fn dim() -> uint { 4 } #[inline(always)] pub fn rows() -> uint { 4 } #[inline(always)] pub fn cols() -> uint { 4 } #[inline(always)] pub fn size_of() -> uint { sys::size_of::<$name>() } } ) ) // GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification] // (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf). // a 4×4 single-precision floating-point matrix pub type mat4 = Mat4; // a 4×4 double-precision floating-point matrix pub type dmat4 = Mat4; mat4_type!(mat4) mat4_type!(dmat4) // Rust-style type aliases pub type Mat4f = Mat4; pub type Mat4f32 = Mat4; pub type Mat4f64 = Mat4; mat4_type!(Mat4f) mat4_type!(Mat4f32) mat4_type!(Mat4f64)