// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::mem; use std::ops::*; use rand::{Rand, Rng}; use num_traits::{Float, One, Zero}; use num_traits::cast; use structure::*; use angle::Rad; use approx::ApproxEq; use matrix::{Matrix3, Matrix4}; use num::BaseFloat; use point::Point3; use rotation::{Rotation, Rotation3, Basis3}; use vector::Vector3; /// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector /// form. /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(Copy, Clone, Debug, PartialEq, RustcEncodable, RustcDecodable)] pub struct Quaternion { /// The scalar part of the quaternion. pub s: S, /// The vector part of the quaternion. pub v: Vector3, } impl Quaternion { /// Construct a new quaternion from one scalar component and three /// imaginary components #[inline] pub fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion { Quaternion::from_sv(w, Vector3::new(xi, yj, zk)) } /// Construct a new quaternion from a scalar and a vector #[inline] pub fn from_sv(s: S, v: Vector3) -> Quaternion { Quaternion { s: s, v: v } } /// The multiplicative identity. #[inline] pub fn one() -> Quaternion { Quaternion::from_sv(S::one(), Vector3::zero()) } /// The conjugate of the quaternion. #[inline] pub fn conjugate(self) -> Quaternion { Quaternion::from_sv(self.s, -self.v) } /// Do a normalized linear interpolation with `other`, by `amount`. pub fn nlerp(self, other: Quaternion, amount: S) -> Quaternion { (self * (S::one() - amount) + other * amount).normalize() } /// Spherical Linear Intoperlation /// /// Return the spherical linear interpolation between the quaternion and /// `other`. Both quaternions should be normalized first. /// /// # Performance notes /// /// The `acos` operation used in `slerp` is an expensive operation, so /// unless your quarternions are far away from each other it's generally /// more advisable to use `nlerp` when you know your rotations are going /// to be small. /// /// - [Understanding Slerp, Then Not Using It] /// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/) /// - [Arcsynthesis OpenGL tutorial] /// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) pub fn slerp(self, other: Quaternion, amount: S) -> Quaternion { let dot = self.dot(other); let dot_threshold = cast(0.9995f64).unwrap(); // if quaternions are close together use `nlerp` if dot > dot_threshold { self.nlerp(other, amount) } else { // stay within the domain of acos() // TODO REMOVE WHEN https://github.com/mozilla/rust/issues/12068 IS RESOLVED let robust_dot = if dot > S::one() { S::one() } else if dot < -S::one() { -S::one() } else { dot }; let theta = Rad::acos(robust_dot.clone()); let scale1 = Rad::sin(theta * (S::one() - amount)); let scale2 = Rad::sin(theta * amount); (self * scale1 + other * scale2) * Rad::sin(theta).recip() } } /// Convert a Quaternion to Eular angles /// This is a polar singularity aware conversion /// /// Based on: /// - [Maths - Conversion Quaternion to Euler] /// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/) pub fn to_euler(self) -> (Rad, Rad, Rad) { let sig: S = cast(0.499f64).unwrap(); let two: S = cast(2f64).unwrap(); let one: S = cast(1f64).unwrap(); let (qw, qx, qy, qz) = (self.s, self.v.x, self.v.y, self.v.z); let (sqw, sqx, sqy, sqz) = (qw * qw, qx * qx, qy * qy, qz * qz); let unit = sqx + sqy + sqz + sqw; let test = qx * qy + qz * qw; if test > sig * unit { ( Rad::zero(), Rad::turn_div_4(), Rad::atan2(qx, qw) * two, ) } else if test < -sig * unit { ( Rad::zero(), -Rad::turn_div_4(), Rad::atan2(qx, qw) * two, ) } else { ( Rad::atan2(two * (qy * qw - qx * qz), one - two * (sqy + sqz)), Rad::asin(two * (qx * qy + qz * qw)), Rad::atan2(two * (qx * qw - qy * qz), one - two * (sqx + sqz)), ) } } } impl VectorSpace for Quaternion { type Scalar = S; #[inline] fn zero() -> Quaternion { Quaternion::from_sv(S::zero(), Vector3::zero()) } } impl InnerSpace for Quaternion { #[inline] fn dot(self, other: Quaternion) -> S { self.s * other.s + self.v.dot(other.v) } } impl_operator!( Neg for Quaternion { fn neg(quat) -> Quaternion { Quaternion::from_sv(-quat.s, -quat.v) } }); impl_operator!( Mul for Quaternion { fn mul(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs) } }); impl_assignment_operator!( MulAssign for Quaternion { fn mul_assign(&mut self, scalar) { self.s *= scalar; self.v *= scalar; } }); impl_operator!( Div for Quaternion { fn div(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs) } }); impl_assignment_operator!( DivAssign for Quaternion { fn div_assign(&mut self, scalar) { self.s /= scalar; self.v /= scalar; } }); impl_operator!( Rem for Quaternion { fn rem(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s % rhs, lhs.v % rhs) } }); impl_assignment_operator!( RemAssign for Quaternion { fn rem_assign(&mut self, scalar) { self.s %= scalar; self.v %= scalar; } }); impl_operator!( Mul > for Quaternion { fn mul(lhs, rhs) -> Vector3 {{ let rhs = rhs.clone(); let two: S = cast(2i8).unwrap(); let tmp = lhs.v.cross(rhs) + (rhs * lhs.s); (lhs.v.cross(tmp) * two) + rhs }} }); impl_operator!( Add > for Quaternion { fn add(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v) } }); impl_assignment_operator!( AddAssign > for Quaternion { fn add_assign(&mut self, other) { self.s += other.s; self.v += other.v; } }); impl_operator!( Sub > for Quaternion { fn sub(lhs, rhs) -> Quaternion { Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v) } }); impl_assignment_operator!( SubAssign > for Quaternion { fn sub_assign(&mut self, other) { self.s -= other.s; self.v -= other.v; } }); impl_operator!( Mul > for Quaternion { fn mul(lhs, rhs) -> Quaternion { Quaternion::new(lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z, lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y, lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z, lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x) } }); macro_rules! impl_scalar_mul { ($S:ident) => { impl_operator!(Mul> for $S { fn mul(scalar, quat) -> Quaternion<$S> { Quaternion::from_sv(scalar * quat.s, scalar * quat.v) } }); }; } macro_rules! impl_scalar_div { ($S:ident) => { impl_operator!(Div> for $S { fn div(scalar, quat) -> Quaternion<$S> { Quaternion::from_sv(scalar / quat.s, scalar / quat.v) } }); }; } impl_scalar_mul!(f32); impl_scalar_mul!(f64); impl_scalar_div!(f32); impl_scalar_div!(f64); impl ApproxEq for Quaternion { type Epsilon = S; #[inline] fn approx_eq_eps(&self, other: &Quaternion, epsilon: &S) -> bool { self.s.approx_eq_eps(&other.s, epsilon) && self.v.approx_eq_eps(&other.v, epsilon) } } impl From> for Matrix3 { /// Convert the quaternion to a 3 x 3 rotation matrix fn from(quat: Quaternion) -> Matrix3 { let x2 = quat.v.x + quat.v.x; let y2 = quat.v.y + quat.v.y; let z2 = quat.v.z + quat.v.z; let xx2 = x2 * quat.v.x; let xy2 = x2 * quat.v.y; let xz2 = x2 * quat.v.z; let yy2 = y2 * quat.v.y; let yz2 = y2 * quat.v.z; let zz2 = z2 * quat.v.z; let sy2 = y2 * quat.s; let sz2 = z2 * quat.s; let sx2 = x2 * quat.s; Matrix3::new(S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2) } } impl From> for Matrix4 { /// Convert the quaternion to a 4 x 4 rotation matrix fn from(quat: Quaternion) -> Matrix4 { let x2 = quat.v.x + quat.v.x; let y2 = quat.v.y + quat.v.y; let z2 = quat.v.z + quat.v.z; let xx2 = x2 * quat.v.x; let xy2 = x2 * quat.v.y; let xz2 = x2 * quat.v.z; let yy2 = y2 * quat.v.y; let yz2 = y2 * quat.v.z; let zz2 = z2 * quat.v.z; let sy2 = y2 * quat.s; let sz2 = z2 * quat.s; let sx2 = x2 * quat.s; Matrix4::new(S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, S::zero(), xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, S::zero(), xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2, S::zero(), S::zero(), S::zero(), S::zero(), S::one()) } } // Quaternion Rotation impls impl From> for Basis3 { #[inline] fn from(quat: Quaternion) -> Basis3 { Basis3::from_quaternion(&quat) } } impl Rotation> for Quaternion { #[inline] fn one() -> Quaternion { Quaternion::one() } #[inline] fn look_at(dir: Vector3, up: Vector3) -> Quaternion { Matrix3::look_at(dir, up).into() } #[inline] fn between_vectors(a: Vector3, b: Vector3) -> Quaternion { //http://stackoverflow.com/questions/1171849/ //finding-quaternion-representing-the-rotation-from-one-vector-to-another Quaternion::from_sv(S::one() + a.dot(b), a.cross(b)).normalize() } #[inline] fn rotate_vector(&self, vec: Vector3) -> Vector3 { self * vec } #[inline] fn concat(&self, other: &Quaternion) -> Quaternion { self * other } #[inline] fn concat_self(&mut self, other: &Quaternion) { *self = &*self * other; } #[inline] fn invert(&self) -> Quaternion { self.conjugate() / self.magnitude2() } #[inline] fn invert_self(&mut self) { *self = self.invert() } } impl Rotation3 for Quaternion { #[inline] fn from_axis_angle(axis: Vector3, angle: Rad) -> Quaternion { let (s, c) = Rad::sin_cos(angle * cast(0.5f64).unwrap()); Quaternion::from_sv(c, axis * s) } /// - [Maths - Conversion Euler to Quaternion] /// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm) fn from_euler(x: Rad, y: Rad, z: Rad) -> Quaternion { let (s1, c1) = Rad::sin_cos(x * cast(0.5f64).unwrap()); let (s2, c2) = Rad::sin_cos(y * cast(0.5f64).unwrap()); let (s3, c3) = Rad::sin_cos(z * cast(0.5f64).unwrap()); Quaternion::new(c1 * c2 * c3 - s1 * s2 * s3, s1 * s2 * c3 + c1 * c2 * s3, s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3) } } impl Into<[S; 4]> for Quaternion { #[inline] fn into(self) -> [S; 4] { match self.into() { (w, xi, yj, zk) => [w, xi, yj, zk] } } } impl AsRef<[S; 4]> for Quaternion { #[inline] fn as_ref(&self) -> &[S; 4] { unsafe { mem::transmute(self) } } } impl AsMut<[S; 4]> for Quaternion { #[inline] fn as_mut(&mut self) -> &mut [S; 4] { unsafe { mem::transmute(self) } } } impl From<[S; 4]> for Quaternion { #[inline] fn from(v: [S; 4]) -> Quaternion { Quaternion::new(v[0], v[1], v[2], v[3]) } } impl<'a, S: BaseFloat> From<&'a [S; 4]> for &'a Quaternion { #[inline] fn from(v: &'a [S; 4]) -> &'a Quaternion { unsafe { mem::transmute(v) } } } impl<'a, S: BaseFloat> From<&'a mut [S; 4]> for &'a mut Quaternion { #[inline] fn from(v: &'a mut [S; 4]) -> &'a mut Quaternion { unsafe { mem::transmute(v) } } } impl Into<(S, S, S, S)> for Quaternion { #[inline] fn into(self) -> (S, S, S, S) { match self { Quaternion { s, v: Vector3 { x, y, z } } => (s, x, y, z) } } } impl AsRef<(S, S, S, S)> for Quaternion { #[inline] fn as_ref(&self) -> &(S, S, S, S) { unsafe { mem::transmute(self) } } } impl AsMut<(S, S, S, S)> for Quaternion { #[inline] fn as_mut(&mut self) -> &mut (S, S, S, S) { unsafe { mem::transmute(self) } } } impl From<(S, S, S, S)> for Quaternion { #[inline] fn from(v: (S, S, S, S)) -> Quaternion { match v { (w, xi, yj, zk) => Quaternion::new(w, xi, yj, zk) } } } impl<'a, S: BaseFloat> From<&'a (S, S, S, S)> for &'a Quaternion { #[inline] fn from(v: &'a (S, S, S, S)) -> &'a Quaternion { unsafe { mem::transmute(v) } } } impl<'a, S: BaseFloat> From<&'a mut (S, S, S, S)> for &'a mut Quaternion { #[inline] fn from(v: &'a mut (S, S, S, S)) -> &'a mut Quaternion { unsafe { mem::transmute(v) } } } macro_rules! index_operators { ($S:ident, $Output:ty, $I:ty) => { impl<$S: BaseFloat> Index<$I> for Quaternion<$S> { type Output = $Output; #[inline] fn index<'a>(&'a self, i: $I) -> &'a $Output { let v: &[$S; 4] = self.as_ref(); &v[i] } } impl<$S: BaseFloat> IndexMut<$I> for Quaternion<$S> { #[inline] fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output { let v: &mut [$S; 4] = self.as_mut(); &mut v[i] } } } } index_operators!(S, S, usize); index_operators!(S, [S], Range); index_operators!(S, [S], RangeTo); index_operators!(S, [S], RangeFrom); index_operators!(S, [S], RangeFull); impl Rand for Quaternion { #[inline] fn rand(rng: &mut R) -> Quaternion { Quaternion::from_sv(rng.gen(), rng.gen()) } } #[cfg(test)] mod tests { use quaternion::*; use vector::*; const QUATERNION: Quaternion = Quaternion { s: 1.0, v: Vector3 { x: 2.0, y: 3.0, z: 4.0 }, }; #[test] fn test_into() { let v = QUATERNION; { let v: [f32; 4] = v.into(); assert_eq!(v, [1.0, 2.0, 3.0, 4.0]); } { let v: (f32, f32, f32, f32) = v.into(); assert_eq!(v, (1.0, 2.0, 3.0, 4.0)); } } #[test] fn test_as_ref() { let v = QUATERNION; { let v: &[f32; 4] = v.as_ref(); assert_eq!(v, &[1.0, 2.0, 3.0, 4.0]); } { let v: &(f32, f32, f32, f32) = v.as_ref(); assert_eq!(v, &(1.0, 2.0, 3.0, 4.0)); } } #[test] fn test_as_mut() { let mut v = QUATERNION; { let v: &mut[f32; 4] = v.as_mut(); assert_eq!(v, &mut [1.0, 2.0, 3.0, 4.0]); } { let v: &mut(f32, f32, f32, f32) = v.as_mut(); assert_eq!(v, &mut (1.0, 2.0, 3.0, 4.0)); } } #[test] fn test_from() { assert_eq!(Quaternion::from([1.0, 2.0, 3.0, 4.0]), QUATERNION); { let v = &[1.0, 2.0, 3.0, 4.0]; let v: &Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } { let v = &mut [1.0, 2.0, 3.0, 4.0]; let v: &mut Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } assert_eq!(Quaternion::from((1.0, 2.0, 3.0, 4.0)), QUATERNION); { let v = &(1.0, 2.0, 3.0, 4.0); let v: &Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } { let v = &mut (1.0, 2.0, 3.0, 4.0); let v: &mut Quaternion<_> = From::from(v); assert_eq!(v, &QUATERNION); } } }