// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Points are fixed positions in affine space with no length or direction. This //! disinguishes them from vectors, which have a length and direction, but do //! not have a fixed position. use std::fmt; use std::mem; use std::ops::*; use rust_num::{one, zero}; use approx::ApproxEq; use array::Array1; use bound::*; use matrix::{Matrix, Matrix4}; use num::{BaseNum, BaseFloat}; use plane::Plane; use vector::*; /// A point in 2-dimensional space. #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Point2 { pub x: S, pub y: S } /// A point in 3-dimensional space. #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Point3 { pub x: S, pub y: S, pub z: S } impl Point2 { #[inline] pub fn new(x: S, y: S) -> Point2 { Point2 { x: x, y: y } } } impl Point3 { #[inline] pub fn new(x: S, y: S, z: S) -> Point3 { Point3 { x: x, y: y, z: z } } } impl Point3 { #[inline] pub fn from_homogeneous(v: &Vector4) -> Point3 { let e = v.truncate().mul_s(one::() / v.w); Point3::new(e.x, e.y, e.z) //FIXME } #[inline] pub fn to_homogeneous(&self) -> Vector4 { Vector4::new(self.x, self.y, self.z, one()) } } /// Specifies the numeric operations for point types. pub trait Point>: Array1 + Clone { /// Create a point at the origin. fn origin() -> Self; /// Create a point from a vector. fn from_vec(v: &V) -> Self; /// Convert a point to a vector. fn to_vec(&self) -> V; /// Multiply each component by a scalar, returning the new point. #[must_use] fn mul_s(&self, s: S) -> Self; /// Divide each component by a scalar, returning the new point. #[must_use] fn div_s(&self, s: S) -> Self; /// Subtract a scalar from each component, returning the new point. #[must_use] fn rem_s(&self, s: S) -> Self; /// Add a vector to this point, returning the new point. #[must_use] fn add_v(&self, v: &V) -> Self; /// Subtract another point from this one, returning a new vector. fn sub_p(&self, p: &Self) -> V; /// Multiply each component by a scalar, in-place. fn mul_self_s(&mut self, s: S); /// Divide each component by a scalar, in-place. fn div_self_s(&mut self, s: S); /// Take the remainder of each component by a scalar, in-place. fn rem_self_s(&mut self, s: S); /// Add a vector to this point, in-place. fn add_self_v(&mut self, v: &V); /// This is a weird one, but its useful for plane calculations. fn dot(&self, v: &V) -> S; #[must_use] fn min(&self, p: &Self) -> Self; #[must_use] fn max(&self, p: &Self) -> Self; } impl Array1 for Point2 { #[inline] fn map(&mut self, mut op: F) -> Point2 where F: FnMut(S) -> S { self.x = op(self.x); self.y = op(self.y); *self } } impl Point> for Point2 { #[inline] fn origin() -> Point2 { Point2::new(zero(), zero()) } #[inline] fn from_vec(v: &Vector2) -> Point2 { Point2::new(v.x, v.y) } #[inline] fn to_vec(&self) -> Vector2 { Vector2::new(self.x, self.y) } #[inline] fn mul_s(&self, s: S) -> Point2 { Point2::new(self.x * s, self.y * s) } #[inline] fn div_s(&self, s: S) -> Point2 { Point2::new(self.x / s, self.y / s) } #[inline] fn rem_s(&self, s: S) -> Point2 { Point2::new(self.x % s, self.y % s) } #[inline] fn add_v(&self, v: &Vector2) -> Point2 { Point2::new(self.x + v.x, self.y + v.y) } #[inline] fn sub_p(&self, p: &Point2) -> Vector2 { Vector2::new(self.x - p.x, self.y - p.y) } #[inline] fn mul_self_s(&mut self, s: S) { self.x = self.x * s; self.y = self.y * s; } #[inline] fn div_self_s(&mut self, s: S) { self.x = self.x / s; self.y = self.y / s; } #[inline] fn rem_self_s(&mut self, s: S) { self.x = self.x % s; self.y = self.y % s; } #[inline] fn add_self_v(&mut self, v: &Vector2) { self.x = self.x + v.x; self.y = self.y + v.y; } #[inline] fn dot(&self, v: &Vector2) -> S { self.x * v.x + self.y * v.y } #[inline] fn min(&self, p: &Point2) -> Point2 { Point2::new(self.x.partial_min(p.x), self.y.partial_min(p.y)) } #[inline] fn max(&self, p: &Point2) -> Point2 { Point2::new(self.x.partial_max(p.x), self.y.partial_max(p.y)) } } impl ApproxEq for Point2 { #[inline] fn approx_eq_eps(&self, other: &Point2, epsilon: &S) -> bool { self.x.approx_eq_eps(&other.x, epsilon) && self.y.approx_eq_eps(&other.y, epsilon) } } impl Array1 for Point3 { #[inline] fn map(&mut self, mut op: F) -> Point3 where F: FnMut(S) -> S { self.x = op(self.x); self.y = op(self.y); self.z = op(self.z); *self } } impl Point> for Point3 { #[inline] fn origin() -> Point3 { Point3::new(zero(), zero(), zero()) } #[inline] fn from_vec(v: &Vector3) -> Point3 { Point3::new(v.x, v.y, v.z) } #[inline] fn to_vec(&self) -> Vector3 { Vector3::new(self.x, self.y, self.z) } #[inline] fn mul_s(&self, s: S) -> Point3 { Point3::new(self.x * s, self.y * s, self.z * s) } #[inline] fn div_s(&self, s: S) -> Point3 { Point3::new(self.x / s, self.y / s, self.z / s) } #[inline] fn rem_s(&self, s: S) -> Point3 { Point3::new(self.x % s, self.y % s, self.z % s) } #[inline] fn add_v(&self, v: &Vector3) -> Point3 { Point3::new(self.x + v.x, self.y + v.y, self.z + v.z) } #[inline] fn sub_p(&self, p: &Point3) -> Vector3 { Vector3::new(self.x - p.x, self.y - p.y, self.z - p.z) } #[inline] fn mul_self_s(&mut self, s: S) { self.x = self.x * s; self.y = self.y * s; self.z = self.z * s; } #[inline] fn div_self_s(&mut self, s: S) { self.x = self.x / s; self.y = self.y / s; self.z = self.z / s; } #[inline] fn rem_self_s(&mut self, s: S) { self.x = self.x % s; self.y = self.y % s; self.z = self.z % s; } #[inline] fn add_self_v(&mut self, v: &Vector3) { self.x = self.x + v.x; self.y = self.y + v.y; self.z = self.z + v.z; } #[inline] fn dot(&self, v: &Vector3) -> S { self.x * v.x + self.y * v.y + self.z * v.z } #[inline] fn min(&self, p: &Point3) -> Point3 { Point3::new(self.x.partial_min(p.x), self.y.partial_min(p.y), self.z.partial_min(p.z)) } #[inline] fn max(&self, p: &Point3) -> Point3 { Point3::new(self.x.partial_max(p.x), self.y.partial_max(p.y), self.z.partial_max(p.z)) } } impl ApproxEq for Point3 { #[inline] fn approx_eq_eps(&self, other: &Point3, epsilon: &S) -> bool { self.x.approx_eq_eps(&other.x, epsilon) && self.y.approx_eq_eps(&other.y, epsilon) && self.z.approx_eq_eps(&other.z, epsilon) } } macro_rules! fixed_array_conversions { ($PointN:ident <$S:ident> { $($field:ident : $index:expr),+ }, $n:expr) => { impl<$S> Into<[$S; $n]> for $PointN<$S> { #[inline] fn into(self) -> [$S; $n] { match self { $PointN { $($field),+ } => [$($field),+] } } } impl<$S> AsRef<[$S; $n]> for $PointN<$S> { #[inline] fn as_ref(&self) -> &[$S; $n] { unsafe { mem::transmute(self) } } } impl<$S> AsMut<[$S; $n]> for $PointN<$S> { #[inline] fn as_mut(&mut self) -> &mut [$S; $n] { unsafe { mem::transmute(self) } } } impl<$S: Clone> From<[$S; $n]> for $PointN<$S> { #[inline] fn from(v: [$S; $n]) -> $PointN<$S> { // We need to use a clone here because we can't pattern match on arrays yet $PointN { $($field: v[$index].clone()),+ } } } impl<'a, $S> From<&'a [$S; $n]> for &'a $PointN<$S> { #[inline] fn from(v: &'a [$S; $n]) -> &'a $PointN<$S> { unsafe { mem::transmute(v) } } } impl<'a, $S> From<&'a mut [$S; $n]> for &'a mut $PointN<$S> { #[inline] fn from(v: &'a mut [$S; $n]) -> &'a mut $PointN<$S> { unsafe { mem::transmute(v) } } } } } fixed_array_conversions!(Point2 { x:0, y:1 }, 2); fixed_array_conversions!(Point3 { x:0, y:1, z:2 }, 3); macro_rules! tuple_conversions { ($PointN:ident <$S:ident> { $($field:ident),+ }, $Tuple:ty) => { impl<$S> Into<$Tuple> for $PointN<$S> { #[inline] fn into(self) -> $Tuple { match self { $PointN { $($field),+ } => ($($field),+) } } } impl<$S> AsRef<$Tuple> for $PointN<$S> { #[inline] fn as_ref(&self) -> &$Tuple { unsafe { mem::transmute(self) } } } impl<$S> AsMut<$Tuple> for $PointN<$S> { #[inline] fn as_mut(&mut self) -> &mut $Tuple { unsafe { mem::transmute(self) } } } impl<$S> From<$Tuple> for $PointN<$S> { #[inline] fn from(v: $Tuple) -> $PointN<$S> { // We need to use a clone here because we can't pattern match on arrays yet match v { ($($field),+) => $PointN { $($field: $field),+ } } } } impl<'a, $S> From<&'a $Tuple> for &'a $PointN<$S> { #[inline] fn from(v: &'a $Tuple) -> &'a $PointN<$S> { unsafe { mem::transmute(v) } } } impl<'a, $S> From<&'a mut $Tuple> for &'a mut $PointN<$S> { #[inline] fn from(v: &'a mut $Tuple) -> &'a mut $PointN<$S> { unsafe { mem::transmute(v) } } } } } tuple_conversions!(Point2 { x, y }, (S, S)); tuple_conversions!(Point3 { x, y, z }, (S, S, S)); macro_rules! index_operators { ($PointN:ident<$S:ident>, $n:expr, $Output:ty, $I:ty) => { impl<$S> Index<$I> for $PointN<$S> { type Output = $Output; #[inline] fn index<'a>(&'a self, i: $I) -> &'a $Output { let v: &[$S; $n] = self.as_ref(); &v[i] } } impl<$S> IndexMut<$I> for $PointN<$S> { #[inline] fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output { let v: &mut [$S; $n] = self.as_mut(); &mut v[i] } } } } index_operators!(Point2, 2, S, usize); index_operators!(Point3, 3, S, usize); index_operators!(Point2, 2, [S], Range); index_operators!(Point3, 3, [S], Range); index_operators!(Point2, 2, [S], RangeTo); index_operators!(Point3, 3, [S], RangeTo); index_operators!(Point2, 2, [S], RangeFrom); index_operators!(Point3, 3, [S], RangeFrom); index_operators!(Point2, 2, [S], RangeFull); index_operators!(Point3, 3, [S], RangeFull); impl fmt::Debug for Point2 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "[{:?}, {:?}]", self.x, self.y) } } impl fmt::Debug for Point3 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "[{:?}, {:?}, {:?}]", self.x, self.y, self.z) } } impl Bound for Point3 { fn relate_plane(&self, plane: &Plane) -> Relation { let dist = self.dot(&plane.n); if dist > plane.d { Relation::In }else if dist < plane.d { Relation::Out }else { Relation::Cross } } fn relate_clip_space(&self, projection: &Matrix4) -> Relation { use std::cmp::Ordering::*; let p = projection.mul_v(&self.to_homogeneous()); match (p.x.abs().partial_cmp(&p.w), p.y.abs().partial_cmp(&p.w), p.z.abs().partial_cmp(&p.w)) { (Some(Less), Some(Less), Some(Less)) => Relation::In, (Some(Greater), _, _) | (_, Some(Greater), _) | (_, _, Some(Greater)) => Relation::Out, _ => Relation::Cross, } } }