// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::cast::transmute; use std::cmp::ApproxEq; use std::num::{Zero, One}; use std::uint; use super::Dimensional; use vec::Vec4; use super::Mat3; #[deriving(Eq)] pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4, } pub trait ToMat4 { pub fn to_mat4(&self) -> Mat4; } impl Mat4 { /// Construct a 4 x 4 matrix /// /// # Arguments /// /// - `c0r0`, `c0r1`, `c0r2`, `c0r3`: the first column of the matrix /// - `c1r0`, `c1r1`, `c1r2`, `c1r3`: the second column of the matrix /// - `c2r0`, `c2r1`, `c2r2`, `c2r3`: the third column of the matrix /// - `c3r0`, `c3r1`, `c3r2`, `c3r3`: the fourth column of the matrix /// /// ~~~ /// c0 c1 c2 c3 /// +------+------+------+------+ /// r0 | c0r0 | c1r0 | c2r0 | c3r0 | /// +------+------+------+------+ /// r1 | c0r1 | c1r1 | c2r1 | c3r1 | /// +------+------+------+------+ /// r2 | c0r2 | c1r2 | c2r2 | c3r2 | /// +------+------+------+------+ /// r3 | c0r3 | c1r3 | c2r3 | c3r3 | /// +------+------+------+------+ /// ~~~ #[inline] pub fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { Mat4::from_cols(Vec4::new(c0r0, c0r1, c0r2, c0r3), Vec4::new(c1r0, c1r1, c1r2, c1r3), Vec4::new(c2r0, c2r1, c2r2, c2r3), Vec4::new(c3r0, c3r1, c3r2, c3r3)) } /// Construct a 4 x 4 matrix from column vectors /// /// # Arguments /// /// - `c0`: the first column vector of the matrix /// - `c1`: the second column vector of the matrix /// - `c2`: the third column vector of the matrix /// - `c3`: the fourth column vector of the matrix /// /// ~~~ /// c0 c1 c2 c3 /// +------+------+------+------+ /// r0 | c0.x | c1.x | c2.x | c3.x | /// +------+------+------+------+ /// r1 | c0.y | c1.y | c2.y | c3.y | /// +------+------+------+------+ /// r2 | c0.z | c1.z | c2.z | c3.z | /// +------+------+------+------+ /// r3 | c0.w | c1.w | c2.w | c3.w | /// +------+------+------+------+ /// ~~~ #[inline] pub fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { Mat4 { x: c0, y: c1, z: c2, w: c3 } } #[inline] pub fn col<'a>(&'a self, i: uint) -> &'a Vec4 { self.index(i) } #[inline] pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4 { self.index_mut(i) } #[inline] pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T { self.index(i).index(j) } #[inline] pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T { self.index_mut(i).index_mut(j) } } impl Dimensional,[Vec4,..4]> for Mat4 { #[inline] pub fn index<'a>(&'a self, i: uint) -> &'a Vec4 { &'a self.as_slice()[i] } #[inline] pub fn index_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4 { &'a mut self.as_mut_slice()[i] } #[inline] pub fn as_slice<'a>(&'a self) -> &'a [Vec4,..4] { unsafe { transmute(self) } } #[inline] pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec4,..4] { unsafe { transmute(self) } } #[inline(always)] pub fn map(&self, f: &fn(&Vec4) -> Vec4) -> Mat4 { Mat4::from_cols(f(self.index(0)), f(self.index(1)), f(self.index(2)), f(self.index(3))) } #[inline(always)] pub fn map_mut(&mut self, f: &fn(&mut Vec4)) { f(self.index_mut(0)); f(self.index_mut(1)); f(self.index_mut(2)); f(self.index_mut(3)); } } impl Mat4 { #[inline] pub fn row(&self, i: uint) -> Vec4 { Vec4::new(*self.elem(0, i), *self.elem(1, i), *self.elem(2, i), *self.elem(3, i)) } #[inline] pub fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline] pub fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); self.w.swap(a, b); } #[inline] pub fn transpose(&self) -> Mat4 { Mat4::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0), *self.elem(3, 0), *self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2), *self.elem(3, 2), *self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3)) } #[inline] pub fn transpose_self(&mut self) { let tmp01 = *self.elem(0, 1); let tmp02 = *self.elem(0, 2); let tmp03 = *self.elem(0, 3); let tmp10 = *self.elem(1, 0); let tmp12 = *self.elem(1, 2); let tmp13 = *self.elem(1, 3); let tmp20 = *self.elem(2, 0); let tmp21 = *self.elem(2, 1); let tmp23 = *self.elem(2, 3); let tmp30 = *self.elem(3, 0); let tmp31 = *self.elem(3, 1); let tmp32 = *self.elem(3, 2); *self.elem_mut(0, 1) = *self.elem(1, 0); *self.elem_mut(0, 2) = *self.elem(2, 0); *self.elem_mut(0, 3) = *self.elem(3, 0); *self.elem_mut(1, 0) = *self.elem(0, 1); *self.elem_mut(1, 2) = *self.elem(2, 1); *self.elem_mut(1, 3) = *self.elem(3, 1); *self.elem_mut(2, 0) = *self.elem(0, 2); *self.elem_mut(2, 1) = *self.elem(1, 2); *self.elem_mut(2, 3) = *self.elem(3, 2); *self.elem_mut(3, 0) = *self.elem(0, 3); *self.elem_mut(3, 1) = *self.elem(1, 3); *self.elem_mut(3, 2) = *self.elem(2, 3); *self.elem_mut(1, 0) = tmp01; *self.elem_mut(2, 0) = tmp02; *self.elem_mut(3, 0) = tmp03; *self.elem_mut(0, 1) = tmp10; *self.elem_mut(2, 1) = tmp12; *self.elem_mut(3, 1) = tmp13; *self.elem_mut(0, 2) = tmp20; *self.elem_mut(1, 2) = tmp21; *self.elem_mut(3, 2) = tmp23; *self.elem_mut(0, 3) = tmp30; *self.elem_mut(1, 3) = tmp31; *self.elem_mut(2, 3) = tmp32; } } impl Mat4 { /// Construct a 4 x 4 diagonal matrix with the major diagonal set to `value` /// /// # Arguments /// /// - `value`: the value to set the major diagonal to /// /// ~~~ /// c0 c1 c2 c3 /// +-----+-----+-----+-----+ /// r0 | val | 0 | 0 | 0 | /// +-----+-----+-----+-----+ /// r1 | 0 | val | 0 | 0 | /// +-----+-----+-----+-----+ /// r2 | 0 | 0 | val | 0 | /// +-----+-----+-----+-----+ /// r3 | 0 | 0 | 0 | val | /// +-----+-----+-----+-----+ /// ~~~ #[inline] pub fn from_value(value: T) -> Mat4 { Mat4::new(value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value) } /// Returns the multiplicative identity matrix /// ~~~ /// c0 c1 c2 c3 /// +----+----+----+----+ /// r0 | 1 | 0 | 0 | 0 | /// +----+----+----+----+ /// r1 | 0 | 1 | 0 | 0 | /// +----+----+----+----+ /// r2 | 0 | 0 | 1 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 1 | /// +----+----+----+----+ /// ~~~ #[inline] pub fn identity() -> Mat4 { Mat4::new(One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::()) } /// Returns the additive identity matrix /// ~~~ /// c0 c1 c2 c3 /// +----+----+----+----+ /// r0 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// r1 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// r2 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// ~~~ #[inline] pub fn zero() -> Mat4 { Mat4::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline] pub fn mul_t(&self, value: T) -> Mat4 { Mat4::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value), self.col(2).mul_t(value), self.col(3).mul_t(value)) } #[inline] pub fn mul_v(&self, vec: &Vec4) -> Vec4 { Vec4::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec), self.row(3).dot(vec)) } #[inline] pub fn add_m(&self, other: &Mat4) -> Mat4 { Mat4::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1)), self.col(2).add_v(other.col(2)), self.col(3).add_v(other.col(3))) } #[inline] pub fn sub_m(&self, other: &Mat4) -> Mat4 { Mat4::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1)), self.col(2).sub_v(other.col(2)), self.col(3).sub_v(other.col(3))) } #[inline] pub fn mul_m(&self, other: &Mat4) -> Mat4 { Mat4::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(2).dot(other.col(0)), self.row(3).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)), self.row(2).dot(other.col(1)), self.row(3).dot(other.col(1)), self.row(0).dot(other.col(2)), self.row(1).dot(other.col(2)), self.row(2).dot(other.col(2)), self.row(3).dot(other.col(2)), self.row(0).dot(other.col(3)), self.row(1).dot(other.col(3)), self.row(2).dot(other.col(3)), self.row(3).dot(other.col(3))) } #[inline] pub fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); self.col_mut(3).mul_self_t(value); } #[inline] pub fn add_self_m(&mut self, other: &Mat4) { self.col_mut(0).add_self_v(other.col(0)); self.col_mut(1).add_self_v(other.col(1)); self.col_mut(2).add_self_v(other.col(2)); self.col_mut(3).add_self_v(other.col(3)); } #[inline] pub fn sub_self_m(&mut self, other: &Mat4) { self.col_mut(0).sub_self_v(other.col(0)); self.col_mut(1).sub_self_v(other.col(1)); self.col_mut(2).sub_self_v(other.col(2)); self.col_mut(3).sub_self_v(other.col(3)); } pub fn dot(&self, other: &Mat4) -> T { other.transpose().mul_m(self).trace() } pub fn determinant(&self) -> T { let m0 = Mat3::new(*self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1), *self.elem(1, 2), *self.elem(2, 2), *self.elem(3, 2), *self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3)); let m1 = Mat3::new(*self.elem(0, 1), *self.elem(2, 1), *self.elem(3, 1), *self.elem(0, 2), *self.elem(2, 2), *self.elem(3, 2), *self.elem(0, 3), *self.elem(2, 3), *self.elem(3, 3)); let m2 = Mat3::new(*self.elem(0, 1), *self.elem(1, 1), *self.elem(3, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(3, 2), *self.elem(0, 3), *self.elem(1, 3), *self.elem(3, 3)); let m3 = Mat3::new(*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2), *self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3)); self.elem(0, 0) * m0.determinant() - self.elem(1, 0) * m1.determinant() + self.elem(2, 0) * m2.determinant() - self.elem(3, 0) * m3.determinant() } pub fn trace(&self) -> T { *self.elem(0, 0) + *self.elem(1, 1) + *self.elem(2, 2) + *self.elem(3, 3) } #[inline] pub fn to_identity(&mut self) { *self = Mat4::identity(); } #[inline] pub fn to_zero(&mut self) { *self = Mat4::zero(); } } impl Neg> for Mat4 { #[inline] pub fn neg(&self) -> Mat4 { Mat4::from_cols(-self.col(0), -self.col(1), -self.col(2), -self.col(3)) } } impl> Mat4 { pub fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { // Gauss Jordan Elimination with partial pivoting // So take this matrix, A, augmented with the identity // and essentially reduce [A|I] let mut A = *self; let mut I = Mat4::identity::(); for uint::range(0, 4) |j| { // Find largest element in col j let mut i1 = j; for uint::range(j + 1, 4) |i| { if A.elem(j, i).abs() > A.elem(j, i1).abs() { i1 = i; } } // Swap columns i1 and j in A and I to // put pivot on diagonal A.swap_cols(i1, j); I.swap_cols(i1, j); // Scale col j to have a unit diagonal let ajj = *A.elem(j, j); I.col_mut(j).div_self_t(ajj); A.col_mut(j).div_self_t(ajj); // Eliminate off-diagonal elems in col j of A, // doing identical ops to I for uint::range(0, 4) |i| { if i != j { let ij_mul_aij = I.col(j).mul_t(*A.elem(i, j)); let aj_mul_aij = A.col(j).mul_t(*A.elem(i, j)); I.col_mut(i).sub_self_v(&ij_mul_aij); A.col_mut(i).sub_self_v(&aj_mul_aij); } } } Some(I) } } #[inline] pub fn invert_self(&mut self) { *self = self.inverse().expect("Couldn't invert the matrix!"); } #[inline] pub fn is_identity(&self) -> bool { self.approx_eq(&Mat4::identity()) } #[inline] pub fn is_diagonal(&self) -> bool { self.elem(0, 1).approx_eq(&Zero::zero()) && self.elem(0, 2).approx_eq(&Zero::zero()) && self.elem(0, 3).approx_eq(&Zero::zero()) && self.elem(1, 0).approx_eq(&Zero::zero()) && self.elem(1, 2).approx_eq(&Zero::zero()) && self.elem(1, 3).approx_eq(&Zero::zero()) && self.elem(2, 0).approx_eq(&Zero::zero()) && self.elem(2, 1).approx_eq(&Zero::zero()) && self.elem(2, 3).approx_eq(&Zero::zero()) && self.elem(3, 0).approx_eq(&Zero::zero()) && self.elem(3, 1).approx_eq(&Zero::zero()) && self.elem(3, 2).approx_eq(&Zero::zero()) } #[inline] pub fn is_rotated(&self) -> bool { !self.approx_eq(&Mat4::identity()) } #[inline] pub fn is_symmetric(&self) -> bool { self.elem(0, 1).approx_eq(self.elem(1, 0)) && self.elem(0, 2).approx_eq(self.elem(2, 0)) && self.elem(0, 3).approx_eq(self.elem(3, 0)) && self.elem(1, 0).approx_eq(self.elem(0, 1)) && self.elem(1, 2).approx_eq(self.elem(2, 1)) && self.elem(1, 3).approx_eq(self.elem(3, 1)) && self.elem(2, 0).approx_eq(self.elem(0, 2)) && self.elem(2, 1).approx_eq(self.elem(1, 2)) && self.elem(2, 3).approx_eq(self.elem(3, 2)) && self.elem(3, 0).approx_eq(self.elem(0, 3)) && self.elem(3, 1).approx_eq(self.elem(1, 3)) && self.elem(3, 2).approx_eq(self.elem(2, 3)) } #[inline] pub fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } } impl> ApproxEq for Mat4 { #[inline] pub fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline] pub fn approx_eq(&self, other: &Mat4) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline] pub fn approx_eq_eps(&self, other: &Mat4, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) && self.col(2).approx_eq_eps(other.col(2), epsilon) && self.col(3).approx_eq_eps(other.col(3), epsilon) } } #[cfg(test)] mod tests{ use mat::*; use vec::*; #[test] fn test_mat4() { let a = Mat4 { x: Vec4 { x: 1.0, y: 5.0, z: 9.0, w: 13.0 }, y: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 }, z: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 }, w: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 } }; let b = Mat4 { x: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 }, y: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 }, z: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 }, w: Vec4 { x: 5.0, y: 9.0, z: 13.0, w: 17.0 } }; let c = Mat4 { x: Vec4 { x: 3.0, y: 2.0, z: 1.0, w: 1.0 }, y: Vec4 { x: 2.0, y: 3.0, z: 2.0, w: 2.0 }, z: Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 3.0 }, w: Vec4 { x: 0.0, y: 1.0, z: 1.0, w: 0.0 } }; let v1 = Vec4::new::(1.0, 2.0, 3.0, 4.0); let f1 = 0.5; assert_eq!(a, Mat4::new::(1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0, 4.0, 8.0, 12.0, 16.0)); assert_eq!(a, Mat4::from_cols::(Vec4::new::(1.0, 5.0, 9.0, 13.0), Vec4::new::(2.0, 6.0, 10.0, 14.0), Vec4::new::(3.0, 7.0, 11.0, 15.0), Vec4::new::(4.0, 8.0, 12.0, 16.0))); assert_eq!(Mat4::from_value::(4.0), Mat4::new::(4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 4.0)); assert_eq!(*a.col(0), Vec4::new::(1.0, 5.0, 9.0, 13.0)); assert_eq!(*a.col(1), Vec4::new::(2.0, 6.0, 10.0, 14.0)); assert_eq!(*a.col(2), Vec4::new::(3.0, 7.0, 11.0, 15.0)); assert_eq!(*a.col(3), Vec4::new::(4.0, 8.0, 12.0, 16.0)); assert_eq!(a.row(0), Vec4::new::( 1.0, 2.0, 3.0, 4.0)); assert_eq!(a.row(1), Vec4::new::( 5.0, 6.0, 7.0, 8.0)); assert_eq!(a.row(2), Vec4::new::( 9.0, 10.0, 11.0, 12.0)); assert_eq!(a.row(3), Vec4::new::(13.0, 14.0, 15.0, 16.0)); assert_eq!(*a.col(0), Vec4::new::(1.0, 5.0, 9.0, 13.0)); assert_eq!(*a.col(1), Vec4::new::(2.0, 6.0, 10.0, 14.0)); assert_eq!(*a.col(2), Vec4::new::(3.0, 7.0, 11.0, 15.0)); assert_eq!(*a.col(3), Vec4::new::(4.0, 8.0, 12.0, 16.0)); assert_eq!(Mat4::identity::(), Mat4::new::(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0)); assert_eq!(Mat4::zero::(), Mat4::new::(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)); assert_eq!(a.determinant(), 0.0); assert_eq!(a.trace(), 34.0); assert_eq!(a.neg(), Mat4::new::(-1.0, -5.0, -9.0, -13.0, -2.0, -6.0, -10.0, -14.0, -3.0, -7.0, -11.0, -15.0, -4.0, -8.0, -12.0, -16.0)); assert_eq!(-a, a.neg()); assert_eq!(a.mul_t(f1), Mat4::new::(0.5, 2.5, 4.5, 6.5, 1.0, 3.0, 5.0, 7.0, 1.5, 3.5, 5.5, 7.5, 2.0, 4.0, 6.0, 8.0)); assert_eq!(a.mul_v(&v1), Vec4::new::(30.0, 70.0, 110.0, 150.0)); assert_eq!(a.add_m(&b), Mat4::new::(3.0, 11.0, 19.0, 27.0, 5.0, 13.0, 21.0, 29.0, 7.0, 15.0, 23.0, 31.0, 9.0, 17.0, 25.0, 33.0)); assert_eq!(a.sub_m(&b), Mat4::new::(-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0)); assert_eq!(a.mul_m(&b), Mat4::new::(100.0, 228.0, 356.0, 484.0, 110.0, 254.0, 398.0, 542.0, 120.0, 280.0, 440.0, 600.0, 130.0, 306.0, 482.0, 658.0)); assert_eq!(a.dot(&b), 1632.0); assert_eq!(a.transpose(), Mat4::new::( 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0)); assert_approx_eq!(c.inverse().unwrap(), Mat4::new::( 5.0, -4.0, 1.0, 0.0, -4.0, 8.0, -4.0, 0.0, 4.0, -8.0, 4.0, 8.0, -3.0, 4.0, 1.0, -8.0).mul_t(0.125)); let ident = Mat4::identity::(); assert_eq!(ident.inverse().unwrap(), ident); assert!(ident.is_identity()); assert!(ident.is_symmetric()); assert!(ident.is_diagonal()); assert!(!ident.is_rotated()); assert!(ident.is_invertible()); assert!(!a.is_identity()); assert!(!a.is_symmetric()); assert!(!a.is_diagonal()); assert!(a.is_rotated()); assert!(!a.is_invertible()); let c = Mat4::new::(4.0, 3.0, 2.0, 1.0, 3.0, 4.0, 3.0, 2.0, 2.0, 3.0, 4.0, 3.0, 1.0, 2.0, 3.0, 4.0); assert!(!c.is_identity()); assert!(c.is_symmetric()); assert!(!c.is_diagonal()); assert!(c.is_rotated()); assert!(c.is_invertible()); assert!(Mat4::from_value::(6.0).is_diagonal()); } fn test_mat4_mut() { let a = Mat4 { x: Vec4 { x: 1.0, y: 5.0, z: 9.0, w: 13.0 }, y: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 }, z: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 }, w: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 } }; let b = Mat4 { x: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 }, y: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 }, z: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 }, w: Vec4 { x: 5.0, y: 9.0, z: 13.0, w: 17.0 } }; let c = Mat4 { x: Vec4 { x: 3.0, y: 2.0, z: 1.0, w: 1.0 }, y: Vec4 { x: 2.0, y: 3.0, z: 2.0, w: 2.0 }, z: Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 3.0 }, w: Vec4 { x: 0.0, y: 1.0, z: 1.0, w: 0.0 } }; let f1 = 0.5; let mut mut_a = a; let mut mut_c = c; mut_a.swap_cols(0, 3); assert_eq!(mut_a.col(0), a.col(3)); assert_eq!(mut_a.col(3), a.col(0)); mut_a = a; mut_a.swap_cols(1, 2); assert_eq!(mut_a.col(1), a.col(2)); assert_eq!(mut_a.col(2), a.col(1)); mut_a = a; mut_a.swap_rows(0, 3); assert_eq!(mut_a.row(0), a.row(3)); assert_eq!(mut_a.row(3), a.row(0)); mut_a = a; mut_a.swap_rows(1, 2); assert_eq!(mut_a.row(1), a.row(2)); assert_eq!(mut_a.row(2), a.row(1)); mut_a = a; mut_a.to_identity(); assert!(mut_a.is_identity()); mut_a = a; mut_a.to_zero(); assert_eq!(mut_a, Mat4::zero::()); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.add_self_m(&b); assert_eq!(mut_a, a.add_m(&b)); mut_a = a; mut_a.sub_self_m(&b); assert_eq!(mut_a, a.sub_m(&b)); mut_a = a; mut_c.invert_self(); assert_eq!(mut_c, c.inverse().unwrap()); // mut_c = c; mut_a.transpose_self(); assert_eq!(mut_a, a.transpose()); // mut_a = a; } #[test] fn test_mat4_approx_eq() { assert!(!Mat4::new::(0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001, 0.000001) .approx_eq(&Mat4::zero::())); assert!(Mat4::new::(0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001, 0.0000001) .approx_eq(&Mat4::zero::())); } }