// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. pub use dim::Dimensional; mod num_macros; mod dim_macros; mod vec_macros; #[deriving(Clone, Eq)] pub struct Vec2 { x: T, y: T } // GLSL-style type aliases pub type vec2 = Vec2; pub type dvec2 = Vec2; pub type bvec2 = Vec2; pub type ivec2 = Vec2; pub type uvec2 = Vec2; // Rust-style type aliases pub type Vec2f = Vec2; pub type Vec2f32 = Vec2; pub type Vec2f64 = Vec2; pub type Vec2i = Vec2; pub type Vec2i8 = Vec2; pub type Vec2i16 = Vec2; pub type Vec2i32 = Vec2; pub type Vec2i64 = Vec2; pub type Vec2u = Vec2; pub type Vec2u8 = Vec2; pub type Vec2u16 = Vec2; pub type Vec2u32 = Vec2; pub type Vec2u64 = Vec2; pub type Vec2b = Vec2; impl_dimensional!(Vec2, T, 2) impl_dimensional_fns!(Vec2, T, 2) impl_swap!(Vec2) impl_approx!(Vec2) impl_vec!(Vec2 { x, y }) impl_vec_clonable!(Vec2) impl_vec_numeric!(Vec2) impl_vec_neg!(Vec2) impl_vec_euclidean!(Vec2) impl_vec_ord!(Vec2) impl_vec_eq!(Vec2) impl_vec_bool!(Vec2) impl_vec_not!(Vec2) impl Vec2 { #[inline] pub fn unit_x() -> Vec2 { Vec2::new(one!(T), zero!(T)) } #[inline] pub fn unit_y() -> Vec2 { Vec2::new(zero!(T), one!(T)) } #[inline] pub fn perp_dot(&self, other: &Vec2) -> T { (*self.index(0) * *other.index(1)) - (*self.index(1) * *other.index(0)) } } #[cfg(test)] mod vec2_tests { use vec::*; #[test] fn test_vec2() { let a = Vec2 { x: 1.0, y: 2.0 }; let b = Vec2 { x: 3.0, y: 4.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert_eq!(Vec2::new::(1.0, 2.0), a); assert_eq!(Vec2::from_value(1.0), Vec2::new::(1.0, 1.0)); assert_eq!(Vec2::zero(), Vec2::new::(0.0, 0.0)); assert_eq!(Vec2::unit_x(), Vec2::new::(1.0, 0.0)); assert_eq!(Vec2::unit_y(), Vec2::new::(0.0, 1.0)); assert_eq!(Vec2::identity(), Vec2::new::(1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; assert_eq!(mut_a, Vec2::new::(42.0, 43.0)); mut_a = a; mut_a.swap(0, 1); assert_eq!(*mut_a.index(0), *a.index(1)); assert_eq!(*mut_a.index(1), *a.index(0)); mut_a = a; assert_eq!(a.x, 1.0); assert_eq!(a.y, 2.0); assert_eq!(*a.index(0), 1.0); assert_eq!(*a.index(1), 2.0); assert_eq!(-a, Vec2::new::(-1.0, -2.0)); assert_eq!(a.neg(), Vec2::new::(-1.0, -2.0)); assert_eq!(a.mul_t(f1), Vec2::new::( 1.5, 3.0)); assert_eq!(a.div_t(f2), Vec2::new::( 2.0, 4.0)); assert_eq!(a.add_v(&b), Vec2::new::( 4.0, 6.0)); assert_eq!(a.sub_v(&b), Vec2::new::( -2.0, -2.0)); assert_eq!(a.mul_v(&b), Vec2::new::( 3.0, 8.0)); assert_eq!(a.div_v(&b), Vec2::new::(1.0/3.0, 2.0/4.0)); mut_a.neg_self(); assert_eq!(mut_a, -a); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert_eq!(mut_a, a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert_eq!(mut_a, a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert_eq!(mut_a, a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert_eq!(mut_a, a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert_eq!(mut_a, a.div_v(&b)); } #[test] fn test_vec2_approx_eq() { assert!(!Vec2::new::(0.000001, 0.000001).approx_eq(&Vec2::new::(0.0, 0.0))); assert!(Vec2::new::(0.0000001, 0.0000001).approx_eq(&Vec2::new::(0.0, 0.0))); } #[test] fn test_vec2_euclidean() { let a = Vec2::new::(5.0, 12.0); // (5, 12, 13) Pythagorean triple let b0 = Vec2::new::(3.0, 4.0); // (3, 4, 5) Pythagorean triple let b = a.add_v(&b0); assert_eq!(a.length(), 13.0); assert_eq!(a.length2(), 13.0 * 13.0); assert_eq!(b0.length(), 5.0); assert_eq!(b0.length2(), 5.0 * 5.0); assert_eq!(a.distance(&b), 5.0); assert_eq!(a.distance2(&b), 5.0 * 5.0); assert!(Vec2::new::(1.0, 0.0).angle(&Vec2::new::(0.0, 1.0)).approx_eq(&Real::frac_pi_2())); assert!(Vec2::new::(10.0, 0.0).angle(&Vec2::new::(0.0, 5.0)).approx_eq(&Real::frac_pi_2())); assert!(Vec2::new::(-1.0, 0.0).angle(&Vec2::new::(0.0, 1.0)).approx_eq(&-Real::frac_pi_2::())); assert!(Vec2::new::(3.0, 4.0).normalize().approx_eq(&Vec2::new::(3.0/5.0, 4.0/5.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = Vec2::new::(-2.0, -1.0); let d = Vec2::new::( 1.0, 0.0); assert_eq!(c.lerp(&d, 0.75), Vec2::new::(0.250, -0.250)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert_eq!(mut_c, c.lerp(&d, 0.75)); } #[test] fn test_vec2_boolean() { let tf = Vec2::new(true, false); let ff = Vec2::new(false, false); let tt = Vec2::new(true, true); assert_eq!(tf.any(), true); assert_eq!(tf.all(), false); assert_eq!(tf.not(), Vec2::new(false, true)); assert_eq!(ff.any(), false); assert_eq!(ff.all(), false); assert_eq!(ff.not(), Vec2::new(true, true)); assert_eq!(tt.any(), true); assert_eq!(tt.all(), true); assert_eq!(tt.not(), Vec2::new(false, false)); } } #[deriving(Clone, Eq)] pub struct Vec3 { x: T, y: T, z: T } // GLSL-style type aliases pub type vec3 = Vec3; pub type dvec3 = Vec3; pub type bvec3 = Vec3; pub type ivec3 = Vec3; pub type uvec3 = Vec3; // Rust-style type aliases pub type Vec3f = Vec3; pub type Vec3f32 = Vec3; pub type Vec3f64 = Vec3; pub type Vec3i = Vec3; pub type Vec3i8 = Vec3; pub type Vec3i16 = Vec3; pub type Vec3i32 = Vec3; pub type Vec3i64 = Vec3; pub type Vec3u = Vec3; pub type Vec3u8 = Vec3; pub type Vec3u16 = Vec3; pub type Vec3u32 = Vec3; pub type Vec3u64 = Vec3; pub type Vec3b = Vec3; impl_dimensional!(Vec3, T, 3) impl_dimensional_fns!(Vec3, T, 3) impl_swap!(Vec3) impl_approx!(Vec3) impl_vec!(Vec3 { x, y, z }) impl_vec_clonable!(Vec3) impl_vec_numeric!(Vec3) impl_vec_neg!(Vec3) impl_vec_euclidean!(Vec3) impl_vec_ord!(Vec3) impl_vec_eq!(Vec3) impl_vec_bool!(Vec3) impl_vec_not!(Vec3) impl Vec3 { #[inline] pub fn unit_x() -> Vec3 { Vec3::new(one!(T), zero!(T), zero!(T)) } #[inline] pub fn unit_y() -> Vec3 { Vec3::new(zero!(T), one!(T), zero!(T)) } #[inline] pub fn unit_z() -> Vec3 { Vec3::new(zero!(T), zero!(T), one!(T)) } #[inline] pub fn cross(&self, other: &Vec3) -> Vec3 { Vec3::new((*self.index(1) * *other.index(2)) - (*self.index(2) * *other.index(1)), (*self.index(2) * *other.index(0)) - (*self.index(0) * *other.index(2)), (*self.index(0) * *other.index(1)) - (*self.index(1) * *other.index(0))) } #[inline] pub fn cross_self(&mut self, other: &Vec3) { *self = self.cross(other) } } #[cfg(test)] mod vec3_tests{ use vec::*; #[test] fn test_vec3() { let a = Vec3 { x: 1.0, y: 2.0, z: 3.0 }; let b = Vec3 { x: 4.0, y: 5.0, z: 6.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert_eq!(Vec3::new::(1.0, 2.0, 3.0), a); assert_eq!(Vec3::from_value(1.0), Vec3::new::(1.0, 1.0, 1.0)); assert_eq!(Vec3::zero(), Vec3::new::(0.0, 0.0, 0.0)); assert_eq!(Vec3::unit_x(), Vec3::new::(1.0, 0.0, 0.0)); assert_eq!(Vec3::unit_y(), Vec3::new::(0.0, 1.0, 0.0)); assert_eq!(Vec3::unit_z(), Vec3::new::(0.0, 0.0, 1.0)); assert_eq!(Vec3::identity(), Vec3::new::(1.0, 1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; *mut_a.index_mut(2) = 44.0; assert_eq!(mut_a, Vec3::new::(42.0, 43.0, 44.0)); mut_a = a; mut_a.swap(0, 2); assert_eq!(*mut_a.index(0), *a.index(2)); assert_eq!(*mut_a.index(2), *a.index(0)); mut_a = a; mut_a.swap(1, 2); assert_eq!(*mut_a.index(1), *a.index(2)); assert_eq!(*mut_a.index(2), *a.index(1)); mut_a = a; assert_eq!(a.x, 1.0); assert_eq!(a.y, 2.0); assert_eq!(a.z, 3.0); assert_eq!(*a.index(0), 1.0); assert_eq!(*a.index(1), 2.0); assert_eq!(*a.index(2), 3.0); assert_eq!(a.cross(&b), Vec3::new::(-3.0, 6.0, -3.0)); mut_a.cross_self(&b); assert_eq!(mut_a, a.cross(&b)); mut_a = a; assert_eq!(-a, Vec3::new::(-1.0, -2.0, -3.0)); assert_eq!(a.neg(), Vec3::new::(-1.0, -2.0, -3.0)); assert_eq!(a.mul_t(f1), Vec3::new::( 1.5, 3.0, 4.5)); assert_eq!(a.div_t(f2), Vec3::new::( 2.0, 4.0, 6.0)); assert_eq!(a.add_v(&b), Vec3::new::( 5.0, 7.0, 9.0)); assert_eq!(a.sub_v(&b), Vec3::new::( -3.0, -3.0, -3.0)); assert_eq!(a.mul_v(&b), Vec3::new::( 4.0, 10.0, 18.0)); assert_eq!(a.div_v(&b), Vec3::new::(1.0/4.0, 2.0/5.0, 3.0/6.0)); mut_a.neg_self(); assert_eq!(mut_a, -a); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert_eq!(mut_a, a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert_eq!(mut_a, a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert_eq!(mut_a, a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert_eq!(mut_a, a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert_eq!(mut_a, a.div_v(&b)); } #[test] fn test_vec3_approx_eq() { assert!(!Vec3::new::(0.000001, 0.000001, 0.000001).approx_eq(&Vec3::new::(0.0, 0.0, 0.0))); assert!(Vec3::new::(0.0000001, 0.0000001, 0.0000001).approx_eq(&Vec3::new::(0.0, 0.0, 0.0))); } #[test] fn test_vec3_euclidean() { let a = Vec3::new::(2.0, 3.0, 6.0); // (2, 3, 6, 7) Pythagorean quadruple let b0 = Vec3::new::(1.0, 4.0, 8.0); // (1, 4, 8, 9) Pythagorean quadruple let b = a.add_v(&b0); assert_eq!(a.length(), 7.0); assert_eq!(a.length2(), 7.0 * 7.0); assert_eq!(b0.length(), 9.0); assert_eq!(b0.length2(), 9.0 * 9.0); assert_eq!(a.distance(&b), 9.0); assert_eq!(a.distance2(&b), 9.0 * 9.0); assert!(Vec3::new::(1.0, 0.0, 1.0).angle(&Vec3::new::(1.0, 1.0, 0.0)).approx_eq(&Real::frac_pi_3())); assert!(Vec3::new::(10.0, 0.0, 10.0).angle(&Vec3::new::(5.0, 5.0, 0.0)).approx_eq(&Real::frac_pi_3())); assert!(Vec3::new::(-1.0, 0.0, -1.0).angle(&Vec3::new::(1.0, -1.0, 0.0)).approx_eq(&(2.0 * Real::frac_pi_3()))); assert!(Vec3::new::(2.0, 3.0, 6.0).normalize().approx_eq(&Vec3::new::(2.0/7.0, 3.0/7.0, 6.0/7.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = Vec3::new::(-2.0, -1.0, 1.0); let d = Vec3::new::( 1.0, 0.0, 0.5); assert_eq!(c.lerp(&d, 0.75), Vec3::new::(0.250, -0.250, 0.625)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert_eq!(mut_c, c.lerp(&d, 0.75)); } #[test] fn test_vec3_boolean() { let tft = Vec3::new(true, false, true); let fff = Vec3::new(false, false, false); let ttt = Vec3::new(true, true, true); assert_eq!(tft.any(), true); assert_eq!(tft.all(), false); assert_eq!(tft.not(), Vec3::new(false, true, false)); assert_eq!(fff.any(), false); assert_eq!(fff.all(), false); assert_eq!(fff.not(), Vec3::new(true, true, true)); assert_eq!(ttt.any(), true); assert_eq!(ttt.all(), true); assert_eq!(ttt.not(), Vec3::new(false, false, false)); } } #[deriving(Clone, Eq)] pub struct Vec4 { x: T, y: T, z: T, w: T } // GLSL-style type aliases pub type vec4 = Vec4; pub type dvec4 = Vec4; pub type bvec4 = Vec4; pub type ivec4 = Vec4; pub type uvec4 = Vec4; // Rust-style type aliases pub type Vec4f = Vec4; pub type Vec4f32 = Vec4; pub type Vec4f64 = Vec4; pub type Vec4i = Vec4; pub type Vec4i8 = Vec4; pub type Vec4i16 = Vec4; pub type Vec4i32 = Vec4; pub type Vec4i64 = Vec4; pub type Vec4u = Vec4; pub type Vec4u8 = Vec4; pub type Vec4u16 = Vec4; pub type Vec4u32 = Vec4; pub type Vec4u64 = Vec4; pub type Vec4b = Vec4; impl_dimensional!(Vec4, T, 4) impl_dimensional_fns!(Vec4, T, 4) impl_approx!(Vec4) impl_swap!(Vec4) impl_vec!(Vec4 { x, y, z, w }) impl_vec_clonable!(Vec4) impl_vec_numeric!(Vec4) impl_vec_neg!(Vec4) impl_vec_euclidean!(Vec4) impl_vec_ord!(Vec4) impl_vec_eq!(Vec4) impl_vec_bool!(Vec4) impl_vec_not!(Vec4) impl Vec4 { #[inline] pub fn unit_x() -> Vec4 { Vec4::new(one!(T), zero!(T), zero!(T), zero!(T)) } #[inline] pub fn unit_y() -> Vec4 { Vec4::new(zero!(T), one!(T), zero!(T), zero!(T)) } #[inline] pub fn unit_z() -> Vec4 { Vec4::new(zero!(T), zero!(T), one!(T), zero!(T)) } #[inline] pub fn unit_w() -> Vec4 { Vec4::new(zero!(T), zero!(T), zero!(T), one!(T)) } } #[cfg(test)] mod vec4_tests { use vec::*; #[test] fn test_vec4() { let a = Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 }; let b = Vec4 { x: 5.0, y: 6.0, z: 7.0, w: 8.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert_eq!(Vec4::new::(1.0, 2.0, 3.0, 4.0), a); assert_eq!(Vec4::from_value(1.0), Vec4::new::(1.0, 1.0, 1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; *mut_a.index_mut(2) = 44.0; *mut_a.index_mut(3) = 45.0; assert_eq!(mut_a, Vec4::new::(42.0, 43.0, 44.0, 45.0)); mut_a = a; mut_a.swap(0, 3); assert_eq!(*mut_a.index(0), *a.index(3)); assert_eq!(*mut_a.index(3), *a.index(0)); mut_a = a; mut_a.swap(1, 2); assert_eq!(*mut_a.index(1), *a.index(2)); assert_eq!(*mut_a.index(2), *a.index(1)); mut_a = a; assert_eq!(Vec4::zero(), Vec4::new::(0.0, 0.0, 0.0, 0.0)); assert_eq!(Vec4::unit_x(), Vec4::new::(1.0, 0.0, 0.0, 0.0)); assert_eq!(Vec4::unit_y(), Vec4::new::(0.0, 1.0, 0.0, 0.0)); assert_eq!(Vec4::unit_z(), Vec4::new::(0.0, 0.0, 1.0, 0.0)); assert_eq!(Vec4::unit_w(), Vec4::new::(0.0, 0.0, 0.0, 1.0)); assert_eq!(Vec4::identity(), Vec4::new::(1.0, 1.0, 1.0, 1.0)); assert_eq!(a.x, 1.0); assert_eq!(a.y, 2.0); assert_eq!(a.z, 3.0); assert_eq!(a.w, 4.0); assert_eq!(*a.index(0), 1.0); assert_eq!(*a.index(1), 2.0); assert_eq!(*a.index(2), 3.0); assert_eq!(*a.index(3), 4.0); assert_eq!(-a, Vec4::new::(-1.0, -2.0, -3.0, -4.0)); assert_eq!(a.neg(), Vec4::new::(-1.0, -2.0, -3.0, -4.0)); assert_eq!(a.mul_t(f1), Vec4::new::( 1.5, 3.0, 4.5, 6.0)); assert_eq!(a.div_t(f2), Vec4::new::( 2.0, 4.0, 6.0, 8.0)); assert_eq!(a.add_v(&b), Vec4::new::( 6.0, 8.0, 10.0, 12.0)); assert_eq!(a.sub_v(&b), Vec4::new::( -4.0, -4.0, -4.0, -4.0)); assert_eq!(a.mul_v(&b), Vec4::new::( 5.0, 12.0, 21.0, 32.0)); assert_eq!(a.div_v(&b), Vec4::new::(1.0/5.0, 2.0/6.0, 3.0/7.0, 4.0/8.0)); assert_eq!(a.dot(&b), 70.0); mut_a.neg_self(); assert_eq!(mut_a, -a); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert_eq!(mut_a, a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert_eq!(mut_a, a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert_eq!(mut_a, a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert_eq!(mut_a, a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert_eq!(mut_a, a.div_v(&b)); } #[test] fn test_vec4_approx_eq() { assert!(!Vec4::new::(0.000001, 0.000001, 0.000001, 0.000001).approx_eq(&Vec4::new::(0.0, 0.0, 0.0, 0.0))); assert!(Vec4::new::(0.0000001, 0.0000001, 0.0000001, 0.0000001).approx_eq(&Vec4::new::(0.0, 0.0, 0.0, 0.0))); } #[test] fn test_vec4_euclidean() { let a = Vec4::new::(1.0, 2.0, 4.0, 10.0); // (1, 2, 4, 10, 11) Pythagorean quintuple let b0 = Vec4::new::(1.0, 2.0, 8.0, 10.0); // (1, 2, 8, 10, 13) Pythagorean quintuple let b = a.add_v(&b0); assert_eq!(a.length(), 11.0); assert_eq!(a.length2(), 11.0 * 11.0); assert_eq!(b0.length(), 13.0); assert_eq!(b0.length2(), 13.0 * 13.0); assert_eq!(a.distance(&b), 13.0); assert_eq!(a.distance2(&b), 13.0 * 13.0); assert!(Vec4::new::(1.0, 0.0, 1.0, 0.0).angle(&Vec4::new::(0.0, 1.0, 0.0, 1.0)).approx_eq(&Real::frac_pi_2())); assert!(Vec4::new::(10.0, 0.0, 10.0, 0.0).angle(&Vec4::new::(0.0, 5.0, 0.0, 5.0)).approx_eq(&Real::frac_pi_2())); assert!(Vec4::new::(-1.0, 0.0, -1.0, 0.0).angle(&Vec4::new::(0.0, 1.0, 0.0, 1.0)).approx_eq(&Real::frac_pi_2())); assert!(Vec4::new::(1.0, 2.0, 4.0, 10.0).normalize().approx_eq(&Vec4::new::(1.0/11.0, 2.0/11.0, 4.0/11.0, 10.0/11.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = Vec4::new::(-2.0, -1.0, 1.0, 2.0); let d = Vec4::new::( 1.0, 0.0, 0.5, 1.0); assert_eq!(c.lerp(&d, 0.75), Vec4::new::(0.250, -0.250, 0.625, 1.250)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert_eq!(mut_c, c.lerp(&d, 0.75)); } #[test] fn test_vec4_boolean() { let tftf = Vec4::new(true, false, true, false); let ffff = Vec4::new(false, false, false, false); let tttt = Vec4::new(true, true, true, true); assert_eq!(tftf.any(), true); assert_eq!(tftf.all(), false); assert_eq!(tftf.not(), Vec4::new(false, true, false, true)); assert_eq!(ffff.any(), false); assert_eq!(ffff.all(), false); assert_eq!(ffff.not(), Vec4::new(true, true, true, true)); assert_eq!(tttt.any(), true); assert_eq!(tttt.all(), true); assert_eq!(tttt.not(), Vec4::new(false, false, false, false)); } }