use core::cast::transmute; use core::cmp::Eq; use core::ptr::{addr_of, to_unsafe_ptr}; use core::vec::raw::buf_as_slice; use std::cmp::FuzzyEq; use dim::Dimensional; use funs::exp::*; use funs::trig::*; use funs::common::*; use math::*; use mat::{Mat3, Mat4}; use num::cast::*; use vec::Vec3; // // Quaternion // pub trait Quaternion: Dimensional, Eq, Neg { pure fn mul_t(value: T) -> self; pure fn div_t(value: T) -> self; pure fn mul_v(vec: &Vec3) -> Vec3; pure fn add_q(other: &self) -> self; pure fn sub_q(other: &self) -> self; pure fn mul_q(other: &self) -> self; pure fn dot(other: &self) -> T; pure fn conjugate() -> self; pure fn inverse() -> self; pure fn length2() -> T; pure fn length() -> T; pure fn normalize() -> self; pure fn nlerp(other: &self, amount: T) -> self; pure fn slerp(other: &self, amount: T) -> self; pure fn to_Mat3() -> Mat3; pure fn to_Mat4() -> Mat4; } pub trait ToQuat { pure fn to_Quat() -> Quat; } pub struct Quat { w: T, x: T, y: T, z: T } pub mod Quat { #[inline(always)] pub pure fn new(w: T, x: T, y: T, z: T) -> Quat { Quat { w: move w, x: move x, y: move y, z: move z } } #[inline(always)] pub pure fn from_sv(s: T, v: Vec3) -> Quat { Quat::new(s, v.x, v.y, v.z) } #[inline(always)] pub pure fn from_axis_angle(axis: Vec3, theta: T) -> Quat { let half = radians(&theta) / cast(2); from_sv(cos(&half), axis.mul_t(sin(&half))) } #[inline(always)] pub pure fn zero() -> Quat { let _0 = cast(0); Quat::new(_0, _0, _0, _0) } #[inline(always)] pub pure fn identity() -> Quat { let _0 = cast(0); Quat::new(cast(1), _0, _0, _0) } } pub impl Quat: Quaternion { #[inline(always)] static pure fn dim() -> uint { 4 } #[inline(always)] pure fn to_ptr() -> *T { addr_of(&self[0]) } #[inline(always)] pure fn neg() -> Quat { Quat::new(-self[0], -self[1], -self[2], -self[3]) } #[inline(always)] pure fn mul_t(value: T) -> Quat { Quat::new(self[0] * value, self[1] * value, self[2] * value, self[3] * value) } #[inline(always)] pure fn div_t(value: T) -> Quat { Quat::new(self[0] / value, self[1] / value, self[2] / value, self[3] / value) } #[inline(always)] pure fn mul_v(vec: &Vec3) -> Vec3 { let base = Vec3{ x:self.x, y:self.y, z:self.z }; let tmp = base.cross(vec).add_v(&vec.mul_t(self.w)); base.cross(&tmp).mul_t(cast(2)).add_v(vec) } #[inline(always)] pure fn add_q(other: &Quat) -> Quat { Quat::new(self[0] + other[0], self[1] + other[1], self[2] + other[2], self[3] + other[3]) } #[inline(always)] pure fn sub_q(other: &Quat) -> Quat { Quat::new(self[0] - other[0], self[1] - other[1], self[2] - other[2], self[3] - other[3]) } #[inline(always)] pure fn mul_q(other: &Quat) -> Quat { Quat::new(self.w * other.w - self.x * other.x - self.y * other.y - self.z * other.z, self.w * other.x + self.x * other.w + self.y * other.z - self.z * other.y, self.w * other.y + self.y * other.w + self.z * other.x - self.x * other.z, self.w * other.z + self.z * other.w + self.x * other.y - self.y * other.x) } #[inline(always)] pure fn dot(other: &Quat) -> T { self.w * other.w + self.x * other.x + self.y * other.y + self.z * other.z } #[inline(always)] pure fn conjugate() -> Quat { Quat::new(self.w, -self.x, -self.y, -self.z) } #[inline(always)] pure fn inverse() -> Quat { let mut n: T = cast(1); n /= self.length2(); self.conjugate().mul_t(n) } #[inline(always)] pure fn length2() -> T { self.w * self.w + self.x * self.x + self.y * self.y + self.z * self.z } #[inline(always)] pure fn length() -> T { self.length2().sqrt() } #[inline(always)] pure fn normalize() -> Quat { let mut n: T = cast(1); n /= self.length(); return self.mul_t(n); } #[inline(always)] pure fn nlerp(other: &Quat, amount: T) -> Quat { let _1: T = cast(1); self.mul_t(_1 - amount).add_q(&other.mul_t(amount)).normalize() } /** * Spherical Linear Intoperlation * * Both quaternions should be normalized first, or else strange things will * will happen... * * Note: The `acos` used in `slerp` is an expensive operation, so unless your * quarternions a far away from each other it's generally more advisable to * use nlerp when you know your rotations are going to be small. * * See *[Understanding Slerp, Then Not Using It] * (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)* * for more information. The [Arcsynthesis OpenGL tutorial] * (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) * also provides a good explanation. */ #[inline(always)] pure fn slerp(other: &Quat, amount: T) -> Quat { let dot: T = cast(self.dot(other)); // if quaternions are close together use `nlerp` let dot_threshold = cast(0.9995); if dot > dot_threshold { return self.nlerp(other, amount) } let robust_dot = dot.clamp(&-cast(1), &cast(1)); // stay within the domain of acos() let theta_0 = acos(&robust_dot); // the angle between the quaternions let theta = theta_0 * amount; // the fraction of theta specified by `amount` let q = other.sub_q(&self.mul_t(robust_dot)) .normalize(); self.mul_t(cos(&theta)).add_q(&q.mul_t(sin(&theta))) } #[inline(always)] pure fn to_Mat3() -> Mat3 { let x2 = self.x + self.x; let y2 = self.y + self.y; let z2 = self.z + self.z; let xx2 = x2 * self.x; let xy2 = x2 * self.y; let xz2 = x2 * self.z; let yy2 = y2 * self.y; let yz2 = y2 * self.z; let zz2 = z2 * self.z; let wy2 = y2 * self.w; let wz2 = z2 * self.w; let wx2 = x2 * self.w; let _1: T = cast(1); Mat3::new(_1 - yy2 - zz2, xy2 - wz2, xz2 + wy2, xy2 + wz2, _1 - xx2 - zz2, yz2 - wx2, xz2 - wy2, yz2 + wx2, _1 - xx2 - yy2) } #[inline(always)] pure fn to_Mat4() -> Mat4 { self.to_Mat3().to_Mat4() } } pub impl Quat: Index { #[inline(always)] pure fn index(i: uint) -> T { unsafe { do buf_as_slice( transmute::<*Quat, *T>( to_unsafe_ptr(&self)), 4) |slice| { slice[i] } } } } // TODO: make work for T:Integer pub impl Quat: Eq { #[inline(always)] pure fn eq(other: &Quat) -> bool { self.fuzzy_eq(other) } #[inline(always)] pure fn ne(other: &Quat) -> bool { !(self == *other) } } pub impl Quat: ExactEq { #[inline(always)] pure fn exact_eq(other: &Quat) -> bool { self[0] == other[0] && self[1] == other[1] && self[2] == other[2] && self[3] == other[3] } } pub impl Quat: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Quat) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) && self[3].fuzzy_eq(&other[3]) } }