// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use core::Dimensional; use core::{Mat3, ToMat3}; use core::Vec3; #[path = "../num_macros.rs"] mod num_macros; mod dim_macros; // GLSL-style type aliases pub type quat = Quat; pub type dquat = Quat; // Rust-style type aliases pub type Quatf = Quat; pub type Quatf32 = Quat; pub type Quatf64 = Quat; /// A quaternion in scalar/vector form #[deriving(Clone, Eq)] pub struct Quat { s: T, v: Vec3 } impl_dimensional!(Quat, T, 4) impl_approx!(Quat, 4) impl_swap!(Quat) pub trait ToQuat { pub fn to_quat(&self) -> Quat; } impl Quat { /// Construct the quaternion from one scalar component and three /// imaginary components /// /// # Arguments /// /// - `w`: the scalar component /// - `xi`: the fist imaginary component /// - `yj`: the second imaginary component /// - `zk`: the third imaginary component #[inline] pub fn new(w: T, xi: T, yj: T, zk: T) -> Quat { Quat::from_sv(w, Vec3::new(xi, yj, zk)) } /// Construct the quaternion from a scalar and a vector /// /// # Arguments /// /// - `s`: the scalar component /// - `v`: a vector containing the three imaginary components #[inline] pub fn from_sv(s: T, v: Vec3) -> Quat { Quat { s: s, v: v } } } impl Quat { /// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i` #[inline] pub fn identity() -> Quat { Quat::from_sv(one!(T), Vec3::zero()) } /// The additive identity, ie: `q = 0 + 0i + 0j + 0i` #[inline] pub fn zero() -> Quat { Quat::new(zero!(T), zero!(T), zero!(T), zero!(T)) } #[inline] pub fn from_angle_x(radians: T) -> Quat { Quat::new((radians / two!(T)).cos(), radians.sin(), zero!(T), zero!(T)) } #[inline] pub fn from_angle_y(radians: T) -> Quat { Quat::new((radians / two!(T)).cos(), zero!(T), radians.sin(), zero!(T)) } #[inline] pub fn from_angle_z(radians: T) -> Quat { Quat::new((radians / two!(T)).cos(), zero!(T), zero!(T), radians.sin()) } pub fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Quat { // http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Conversion let xdiv2 = radians_x / two!(T); let ydiv2 = radians_y / two!(T); let zdiv2 = radians_z / two!(T); Quat::new(zdiv2.cos() * xdiv2.cos() * ydiv2.cos() + zdiv2.sin() * xdiv2.sin() * ydiv2.sin(), zdiv2.sin() * xdiv2.cos() * ydiv2.cos() - zdiv2.cos() * xdiv2.sin() * ydiv2.sin(), zdiv2.cos() * xdiv2.sin() * ydiv2.cos() + zdiv2.sin() * xdiv2.cos() * ydiv2.sin(), zdiv2.cos() * xdiv2.cos() * ydiv2.sin() - zdiv2.sin() * xdiv2.sin() * ydiv2.cos()) } #[inline] pub fn from_angle_axis(radians: T, axis: &Vec3) -> Quat { let half = radians / two!(T); Quat::from_sv(half.cos(), axis.mul_t(half.sin())) } pub fn get_angle_axis(&self) -> (T, Vec3) { fail!(~"Not yet implemented.") } /// The result of multiplying the quaternion a scalar #[inline] pub fn mul_t(&self, value: T) -> Quat { Quat::from_sv(self.s * value, self.v.mul_t(value)) } /// The result of dividing the quaternion a scalar #[inline] pub fn div_t(&self, value: T) -> Quat { Quat::from_sv(self.s / value, self.v.div_t(value)) } /// The result of multiplying the quaternion by a vector #[inline] pub fn mul_v(&self, vec: &Vec3) -> Vec3 { let tmp = self.v.cross(vec).add_v(&vec.mul_t(self.s.clone())); self.v.cross(&tmp).mul_t(two!(T)).add_v(vec) } /// The sum of this quaternion and `other` #[inline] pub fn add_q(&self, other: &Quat) -> Quat { Quat::new(*self.index(0) + *other.index(0), *self.index(1) + *other.index(1), *self.index(2) + *other.index(2), *self.index(3) + *other.index(3)) } /// The sum of this quaternion and `other` #[inline] pub fn sub_q(&self, other: &Quat) -> Quat { Quat::new(*self.index(0) - *other.index(0), *self.index(1) - *other.index(1), *self.index(2) - *other.index(2), *self.index(3) - *other.index(3)) } /// The the result of multipliplying the quaternion by `other` pub fn mul_q(&self, other: &Quat) -> Quat { Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z, self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y, self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z, self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x) } /// The dot product of the quaternion and `other` #[inline] pub fn dot(&self, other: &Quat) -> T { self.s * other.s + self.v.dot(&other.v) } /// The conjugate of the quaternion #[inline] pub fn conjugate(&self) -> Quat { Quat::from_sv(self.s.clone(), -self.v.clone()) } /// The multiplicative inverse of the quaternion #[inline] pub fn inverse(&self) -> Quat { self.conjugate().div_t(self.magnitude2()) } /// The squared magnitude of the quaternion. This is useful for /// magnitude comparisons where the exact magnitude does not need to be /// calculated. #[inline] pub fn magnitude2(&self) -> T { self.s * self.s + self.v.length2() } /// The magnitude of the quaternion /// /// # Performance notes /// /// For instances where the exact magnitude of the quaternion does not need /// to be known, for example for quaternion-quaternion magnitude comparisons, /// it is advisable to use the `magnitude2` method instead. #[inline] pub fn magnitude(&self) -> T { self.magnitude2().sqrt() } /// The normalized quaternion #[inline] pub fn normalize(&self) -> Quat { self.mul_t(one!(T) / self.magnitude()) } /// Normalised linear interpolation /// /// # Return value /// /// The intoperlated quaternion pub fn nlerp(&self, other: &Quat, amount: T) -> Quat { self.mul_t(one!(T) - amount).add_q(&other.mul_t(amount)).normalize() } } impl ToMat3 for Quat { /// Convert the quaternion to a 3 x 3 rotation matrix pub fn to_mat3(&self) -> Mat3 { let x2 = self.v.x + self.v.x; let y2 = self.v.y + self.v.y; let z2 = self.v.z + self.v.z; let xx2 = x2 * self.v.x; let xy2 = x2 * self.v.y; let xz2 = x2 * self.v.z; let yy2 = y2 * self.v.y; let yz2 = y2 * self.v.z; let zz2 = z2 * self.v.z; let sy2 = y2 * self.s; let sz2 = z2 * self.s; let sx2 = x2 * self.s; let _1: T = one!(T); Mat3::new(_1 - yy2 - zz2, xy2 + sz2, xz2 - sy2, xy2 - sz2, _1 - xx2 - zz2, yz2 + sx2, xz2 + sy2, yz2 - sx2, _1 - xx2 - yy2) } } impl Neg> for Quat { #[inline] pub fn neg(&self) -> Quat { Quat::from_sv(-self.s, -self.v) } } impl Quat { #[inline] pub fn look_at(dir: &Vec3, up: &Vec3) -> Quat { Mat3::look_at(dir, up).to_quat() } #[inline] pub fn from_axes(x: Vec3, y: Vec3, z: Vec3) -> Quat { Mat3::from_axes(x, y, z).to_quat() } /// Spherical Linear Intoperlation /// /// Perform a spherical linear interpolation between the quaternion and /// `other`. Both quaternions should be normalized first. /// /// # Return value /// /// The intoperlated quaternion /// /// # Performance notes /// /// The `acos` operation used in `slerp` is an expensive operation, so unless /// your quarternions a far away from each other it's generally more advisable /// to use `nlerp` when you know your rotations are going to be small. /// /// - [Understanding Slerp, Then Not Using It] /// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/) /// - [Arcsynthesis OpenGL tutorial] /// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) pub fn slerp(&self, other: &Quat, amount: T) -> Quat { use std::num::cast; let dot = self.dot(other); let dot_threshold = cast(0.9995); // if quaternions are close together use `nlerp` if dot > dot_threshold { self.nlerp(other, amount) } else { // stay within the domain of acos() let robust_dot = dot.clamp(&-one!(T), &one!(T)); let theta_0 = robust_dot.acos(); // the angle between the quaternions let theta = theta_0 * amount; // the fraction of theta specified by `amount` let q = other.sub_q(&self.mul_t(robust_dot)) .normalize(); self.mul_t(theta.cos()) .add_q(&q.mul_t(theta.sin())) } } } #[cfg(test)] mod tests { use core::mat::*; use core::quat::*; use core::vec::*; #[test] fn test_from_angle_axis() { let v = Vec3::new(1f, 0f, 0f); let q = Quat::from_angle_axis((-45f).to_radians(), &Vec3::new(0f, 0f, -1f)); // http://www.wolframalpha.com/input/?i={1,0}+rotate+-45+degrees assert_approx_eq!(q.mul_v(&v), Vec3::new(1f/2f.sqrt(), 1f/2f.sqrt(), 0f)); assert_eq!(q.mul_v(&v).length(), v.length()); assert_approx_eq!(q.to_mat3(), Mat3::new( 1f/2f.sqrt(), 1f/2f.sqrt(), 0f, -1f/2f.sqrt(), 1f/2f.sqrt(), 0f, 0f, 0f, 1f)); } #[test] fn test_approx_eq() { assert!(!Quat::new::(0.000001, 0.000001, 0.000001, 0.000001) .approx_eq(&Quat::new::(0.0, 0.0, 0.0, 0.0))); assert!(Quat::new::(0.0000001, 0.0000001, 0.0000001, 0.0000001) .approx_eq(&Quat::new::(0.0, 0.0, 0.0, 0.0))); } }