// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use vec::*; // TODO #[test] fn test_vec2() { // assert_eq!(vec2::dim, 2); let a = Vec2 { x: 1.0, y: 2.0 }; let b = Vec2 { x: 3.0, y: 4.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert_eq!(vec2::new(1.0, 2.0), a); assert_eq!(vec2::from_value(1.0), vec2::new(1.0, 1.0)); assert_eq!(vec2::zero(), vec2::new(0.0, 0.0)); assert_eq!(vec2::unit_x(), vec2::new(1.0, 0.0)); assert_eq!(vec2::unit_y(), vec2::new(0.0, 1.0)); assert_eq!(vec2::identity(), vec2::new(1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; assert_eq!(mut_a, vec2::new(42.0, 43.0)); mut_a = a; mut_a.swap(0, 1); assert_eq!(*mut_a.index(0), *a.index(1)); assert_eq!(*mut_a.index(1), *a.index(0)); mut_a = a; assert_eq!(a.x, 1.0); assert_eq!(a.y, 2.0); assert_eq!(*a.index(0), 1.0); assert_eq!(*a.index(1), 2.0); assert_eq!(-a, vec2::new(-1.0, -2.0)); assert_eq!(a.neg(), vec2::new(-1.0, -2.0)); assert!(vec2::new(0.0, 0.0).is_zero()); assert!(!vec2::new(1.0, 1.0).is_zero()); assert_eq!(a.mul_t(f1), vec2::new( 1.5, 3.0)); assert_eq!(a.div_t(f2), vec2::new( 2.0, 4.0)); assert_eq!(a.add_v(&b), vec2::new( 4.0, 6.0)); assert_eq!(a.sub_v(&b), vec2::new( -2.0, -2.0)); assert_eq!(a.mul_v(&b), vec2::new( 3.0, 8.0)); assert_eq!(a.div_v(&b), vec2::new(1.0/3.0, 2.0/4.0)); mut_a.neg_self(); assert_eq!(mut_a, -a); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert_eq!(mut_a, a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert_eq!(mut_a, a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert_eq!(mut_a, a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert_eq!(mut_a, a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert_eq!(mut_a, a.div_v(&b)); // mut_a = a; // assert_eq!(c.abs(), vec2::new( 2.0, 1.0)); // assert_eq!(c.min(&d), vec2::new(-2.0, -1.0)); // assert_eq!(c.max(&d), vec2::new( 1.0, 0.0)); } #[test] fn test_vec2_approx_eq() { assert!(!vec2::new(0.000001, 0.000001).approx_eq(&vec2::new(0.0, 0.0))); assert!(vec2::new(0.0000001, 0.0000001).approx_eq(&vec2::new(0.0, 0.0))); } #[test] fn test_vec2_euclidean() { let a = vec2::new(5.0, 12.0); // (5, 12, 13) Pythagorean triple let b0 = vec2::new(3.0, 4.0); // (3, 4, 5) Pythagorean triple let b = a.add_v(&b0); assert_eq!(a.length(), 13.0); assert_eq!(a.length2(), 13.0 * 13.0); assert_eq!(b0.length(), 5.0); assert_eq!(b0.length2(), 5.0 * 5.0); assert_eq!(a.distance(&b), 5.0); assert_eq!(a.distance2(&b), 5.0 * 5.0); assert!(vec2::new(1.0, 0.0).angle(&vec2::new(0.0, 1.0)).approx_eq(&Real::frac_pi_2())); assert!(vec2::new(10.0, 0.0).angle(&vec2::new(0.0, 5.0)).approx_eq(&Real::frac_pi_2())); assert!(vec2::new(-1.0, 0.0).angle(&vec2::new(0.0, 1.0)).approx_eq(&-Real::frac_pi_2::())); assert!(vec2::new(3.0, 4.0).normalize().approx_eq(&vec2::new(3.0/5.0, 4.0/5.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = vec2::new(-2.0, -1.0); let d = vec2::new( 1.0, 0.0); assert_eq!(c.lerp(&d, 0.75), vec2::new(0.250, -0.250)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert_eq!(mut_c, c.lerp(&d, 0.75)); } #[test] fn test_vec2_boolean() { let tf = bvec2::new(true, false); let ff = bvec2::new(false, false); let tt = bvec2::new(true, true); assert_eq!(tf.any(), true); assert_eq!(tf.all(), false); assert_eq!(tf.not(), bvec2::new(false, true)); assert_eq!(ff.any(), false); assert_eq!(ff.all(), false); assert_eq!(ff.not(), bvec2::new(true, true)); assert_eq!(tt.any(), true); assert_eq!(tt.all(), true); assert_eq!(tt.not(), bvec2::new(false, false)); } #[test] fn test_vec3() { // assert_eq!(Vec3::dim, 3); let a = Vec3 { x: 1.0, y: 2.0, z: 3.0 }; let b = Vec3 { x: 4.0, y: 5.0, z: 6.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert_eq!(vec3::new(1.0, 2.0, 3.0), a); assert_eq!(vec3::from_value(1.0), vec3::new(1.0, 1.0, 1.0)); assert_eq!(vec3::zero(), vec3::new(0.0, 0.0, 0.0)); assert_eq!(vec3::unit_x(), vec3::new(1.0, 0.0, 0.0)); assert_eq!(vec3::unit_y(), vec3::new(0.0, 1.0, 0.0)); assert_eq!(vec3::unit_z(), vec3::new(0.0, 0.0, 1.0)); assert_eq!(vec3::identity(), vec3::new(1.0, 1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; *mut_a.index_mut(2) = 44.0; assert_eq!(mut_a, vec3::new(42.0, 43.0, 44.0)); mut_a = a; mut_a.swap(0, 2); assert_eq!(*mut_a.index(0), *a.index(2)); assert_eq!(*mut_a.index(2), *a.index(0)); mut_a = a; mut_a.swap(1, 2); assert_eq!(*mut_a.index(1), *a.index(2)); assert_eq!(*mut_a.index(2), *a.index(1)); mut_a = a; assert_eq!(a.x, 1.0); assert_eq!(a.y, 2.0); assert_eq!(a.z, 3.0); assert_eq!(*a.index(0), 1.0); assert_eq!(*a.index(1), 2.0); assert_eq!(*a.index(2), 3.0); assert_eq!(a.cross(&b), vec3::new(-3.0, 6.0, -3.0)); mut_a.cross_self(&b); assert_eq!(mut_a, a.cross(&b)); mut_a = a; assert_eq!(-a, vec3::new(-1.0, -2.0, -3.0)); assert_eq!(a.neg(), vec3::new(-1.0, -2.0, -3.0)); assert!(vec3::new(0.0, 0.0, 0.0).is_zero()); assert!(!vec3::new(1.0, 1.0, 1.0).is_zero()); assert_eq!(a.mul_t(f1), vec3::new( 1.5, 3.0, 4.5)); assert_eq!(a.div_t(f2), vec3::new( 2.0, 4.0, 6.0)); assert_eq!(a.add_v(&b), vec3::new( 5.0, 7.0, 9.0)); assert_eq!(a.sub_v(&b), vec3::new( -3.0, -3.0, -3.0)); assert_eq!(a.mul_v(&b), vec3::new( 4.0, 10.0, 18.0)); assert_eq!(a.div_v(&b), vec3::new(1.0/4.0, 2.0/5.0, 3.0/6.0)); mut_a.neg_self(); assert_eq!(mut_a, -a); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert_eq!(mut_a, a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert_eq!(mut_a, a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert_eq!(mut_a, a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert_eq!(mut_a, a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert_eq!(mut_a, a.div_v(&b)); // mut_a = a; // exact_eq // approx_eq // eq // assert_eq!(c.abs(), vec3::new( 2.0, 1.0, 1.0)); // assert_eq!(c.min(&d), vec3::new(-2.0, -1.0, 0.5)); // assert_eq!(c.max(&d), vec3::new( 1.0, 0.0, 1.0)); } #[test] fn test_vec3_approx_eq() { assert!(!vec3::new(0.000001, 0.000001, 0.000001).approx_eq(&vec3::new(0.0, 0.0, 0.0))); assert!(vec3::new(0.0000001, 0.0000001, 0.0000001).approx_eq(&vec3::new(0.0, 0.0, 0.0))); } #[test] fn test_vec3_euclidean() { let a = vec3::new(2.0, 3.0, 6.0); // (2, 3, 6, 7) Pythagorean quadruple let b0 = vec3::new(1.0, 4.0, 8.0); // (1, 4, 8, 9) Pythagorean quadruple let b = a.add_v(&b0); assert_eq!(a.length(), 7.0); assert_eq!(a.length2(), 7.0 * 7.0); assert_eq!(b0.length(), 9.0); assert_eq!(b0.length2(), 9.0 * 9.0); assert_eq!(a.distance(&b), 9.0); assert_eq!(a.distance2(&b), 9.0 * 9.0); assert!(vec3::new(1.0, 0.0, 1.0).angle(&vec3::new(1.0, 1.0, 0.0)).approx_eq(&Real::frac_pi_3())); assert!(vec3::new(10.0, 0.0, 10.0).angle(&vec3::new(5.0, 5.0, 0.0)).approx_eq(&Real::frac_pi_3())); assert!(vec3::new(-1.0, 0.0, -1.0).angle(&vec3::new(1.0, -1.0, 0.0)).approx_eq(&(2.0 * Real::frac_pi_3()))); assert!(vec3::new(2.0, 3.0, 6.0).normalize().approx_eq(&vec3::new(2.0/7.0, 3.0/7.0, 6.0/7.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = vec3::new(-2.0, -1.0, 1.0); let d = vec3::new( 1.0, 0.0, 0.5); assert_eq!(c.lerp(&d, 0.75), vec3::new(0.250, -0.250, 0.625)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert_eq!(mut_c, c.lerp(&d, 0.75)); } #[test] fn test_vec3_boolean() { let tft = bvec3::new(true, false, true); let fff = bvec3::new(false, false, false); let ttt = bvec3::new(true, true, true); assert_eq!(tft.any(), true); assert_eq!(tft.all(), false); assert_eq!(tft.not(), bvec3::new(false, true, false)); assert_eq!(fff.any(), false); assert_eq!(fff.all(), false); assert_eq!(fff.not(), bvec3::new(true, true, true)); assert_eq!(ttt.any(), true); assert_eq!(ttt.all(), true); assert_eq!(ttt.not(), bvec3::new(false, false, false)); } #[test] fn test_vec4() { // assert_eq!(Vec4::dim, 4); let a = Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 }; let b = Vec4 { x: 5.0, y: 6.0, z: 7.0, w: 8.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert_eq!(vec4::new(1.0, 2.0, 3.0, 4.0), a); assert_eq!(vec4::from_value(1.0), vec4::new(1.0, 1.0, 1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; *mut_a.index_mut(2) = 44.0; *mut_a.index_mut(3) = 45.0; assert_eq!(mut_a, vec4::new(42.0, 43.0, 44.0, 45.0)); mut_a = a; mut_a.swap(0, 3); assert_eq!(*mut_a.index(0), *a.index(3)); assert_eq!(*mut_a.index(3), *a.index(0)); mut_a = a; mut_a.swap(1, 2); assert_eq!(*mut_a.index(1), *a.index(2)); assert_eq!(*mut_a.index(2), *a.index(1)); mut_a = a; assert_eq!(vec4::zero(), vec4::new(0.0, 0.0, 0.0, 0.0)); assert_eq!(vec4::unit_x(), vec4::new(1.0, 0.0, 0.0, 0.0)); assert_eq!(vec4::unit_y(), vec4::new(0.0, 1.0, 0.0, 0.0)); assert_eq!(vec4::unit_z(), vec4::new(0.0, 0.0, 1.0, 0.0)); assert_eq!(vec4::unit_w(), vec4::new(0.0, 0.0, 0.0, 1.0)); assert_eq!(vec4::identity(), vec4::new(1.0, 1.0, 1.0, 1.0)); assert_eq!(a.x, 1.0); assert_eq!(a.y, 2.0); assert_eq!(a.z, 3.0); assert_eq!(a.w, 4.0); assert_eq!(*a.index(0), 1.0); assert_eq!(*a.index(1), 2.0); assert_eq!(*a.index(2), 3.0); assert_eq!(*a.index(3), 4.0); assert_eq!(-a, vec4::new(-1.0, -2.0, -3.0, -4.0)); assert_eq!(a.neg(), vec4::new(-1.0, -2.0, -3.0, -4.0)); assert!(vec4::new(0.0, 0.0, 0.0, 0.0).is_zero()); assert!(!vec4::new(1.0, 1.0, 1.0, 1.0).is_zero()); assert_eq!(a.mul_t(f1), vec4::new( 1.5, 3.0, 4.5, 6.0)); assert_eq!(a.div_t(f2), vec4::new( 2.0, 4.0, 6.0, 8.0)); assert_eq!(a.add_v(&b), vec4::new( 6.0, 8.0, 10.0, 12.0)); assert_eq!(a.sub_v(&b), vec4::new( -4.0, -4.0, -4.0, -4.0)); assert_eq!(a.mul_v(&b), vec4::new( 5.0, 12.0, 21.0, 32.0)); assert_eq!(a.div_v(&b), vec4::new(1.0/5.0, 2.0/6.0, 3.0/7.0, 4.0/8.0)); assert_eq!(a.dot(&b), 70.0); mut_a.neg_self(); assert_eq!(mut_a, -a); mut_a = a; mut_a.mul_self_t(f1); assert_eq!(mut_a, a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert_eq!(mut_a, a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert_eq!(mut_a, a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert_eq!(mut_a, a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert_eq!(mut_a, a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert_eq!(mut_a, a.div_v(&b)); // mut_a = a; // assert_eq!(c.abs(), vec4::new( 2.0, 1.0, 1.0, 2.0)); // assert_eq!(c.min(&d), vec4::new(-2.0, -1.0, 0.5, 1.0)); // assert_eq!(c.max(&d), vec4::new( 1.0, 0.0, 1.0, 2.0)); } #[test] fn test_vec4_approx_eq() { assert!(!vec4::new(0.000001, 0.000001, 0.000001, 0.000001).approx_eq(&vec4::new(0.0, 0.0, 0.0, 0.0))); assert!(vec4::new(0.0000001, 0.0000001, 0.0000001, 0.0000001).approx_eq(&vec4::new(0.0, 0.0, 0.0, 0.0))); } #[test] fn test_vec4_euclidean() { let a = vec4::new(1.0, 2.0, 4.0, 10.0); // (1, 2, 4, 10, 11) Pythagorean quintuple let b0 = vec4::new(1.0, 2.0, 8.0, 10.0); // (1, 2, 8, 10, 13) Pythagorean quintuple let b = a.add_v(&b0); assert_eq!(a.length(), 11.0); assert_eq!(a.length2(), 11.0 * 11.0); assert_eq!(b0.length(), 13.0); assert_eq!(b0.length2(), 13.0 * 13.0); assert_eq!(a.distance(&b), 13.0); assert_eq!(a.distance2(&b), 13.0 * 13.0); assert!(vec4::new(1.0, 0.0, 1.0, 0.0).angle(&vec4::new(0.0, 1.0, 0.0, 1.0)).approx_eq(&Real::frac_pi_2())); assert!(vec4::new(10.0, 0.0, 10.0, 0.0).angle(&vec4::new(0.0, 5.0, 0.0, 5.0)).approx_eq(&Real::frac_pi_2())); assert!(vec4::new(-1.0, 0.0, -1.0, 0.0).angle(&vec4::new(0.0, 1.0, 0.0, 1.0)).approx_eq(&Real::frac_pi_2())); assert!(vec4::new(1.0, 2.0, 4.0, 10.0).normalize().approx_eq(&vec4::new(1.0/11.0, 2.0/11.0, 4.0/11.0, 10.0/11.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = vec4::new(-2.0, -1.0, 1.0, 2.0); let d = vec4::new( 1.0, 0.0, 0.5, 1.0); assert_eq!(c.lerp(&d, 0.75), vec4::new(0.250, -0.250, 0.625, 1.250)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert_eq!(mut_c, c.lerp(&d, 0.75)); } #[test] fn test_vec4_boolean() { let tftf = bvec4::new(true, false, true, false); let ffff = bvec4::new(false, false, false, false); let tttt = bvec4::new(true, true, true, true); assert_eq!(tftf.any(), true); assert_eq!(tftf.all(), false); assert_eq!(tftf.not(), bvec4::new(false, true, false, true)); assert_eq!(ffff.any(), false); assert_eq!(ffff.all(), false); assert_eq!(ffff.not(), bvec4::new(true, true, true, true)); assert_eq!(tttt.any(), true); assert_eq!(tttt.all(), true); assert_eq!(tttt.not(), bvec4::new(false, false, false, false)); }