// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::cast::transmute; use std::cmp::ApproxEq; use std::num::{Zero, One}; use vec::*; use super::{Mat3, Mat4}; #[deriving(Eq)] pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> } impl<T> Mat2<T> { #[inline] pub fn col<'a>(&'a self, i: uint) -> &'a Vec2<T> { &'a self.as_slice()[i] } #[inline] pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2<T> { &'a mut self.as_mut_slice()[i] } #[inline] pub fn as_slice<'a>(&'a self) -> &'a [Vec2<T>,..2] { unsafe { transmute(self) } } #[inline] pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec2<T>,..2] { unsafe { transmute(self) } } #[inline] pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T { self.col(i).index(j) } #[inline] pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T { self.col_mut(i).index_mut(j) } } impl<T:Copy> Mat2<T> { /// Construct a 2 x 2 matrix /// /// # Arguments /// /// - `c0r0`, `c0r1`: the first column of the matrix /// - `c1r0`, `c1r1`: the second column of the matrix /// /// ~~~ /// c0 c1 /// +------+------+ /// r0 | c0r0 | c1r0 | /// +------+------+ /// r1 | c0r1 | c1r1 | /// +------+------+ /// ~~~ #[inline] pub fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2<T> { Mat2::from_cols(Vec2::new(c0r0, c0r1), Vec2::new(c1r0, c1r1)) } /// Construct a 2 x 2 matrix from column vectors /// /// # Arguments /// /// - `c0`: the first column vector of the matrix /// - `c1`: the second column vector of the matrix /// /// ~~~ /// c0 c1 /// +------+------+ /// r0 | c0.x | c1.x | /// +------+------+ /// r1 | c0.y | c1.y | /// +------+------+ /// ~~~ #[inline] pub fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> { Mat2 { x: c0, y: c1 } } #[inline] pub fn row(&self, i: uint) -> Vec2<T> { Vec2::new(*self.elem(0, i), *self.elem(1, i)) } #[inline] pub fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline] pub fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline] pub fn transpose(&self) -> Mat2<T> { Mat2::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(0, 1), *self.elem(1, 1)) } #[inline] pub fn transpose_self(&mut self) { let tmp01 = *self.elem(0, 1); let tmp10 = *self.elem(1, 0); *self.elem_mut(0, 1) = *self.elem(1, 0); *self.elem_mut(1, 0) = *self.elem(0, 1); *self.elem_mut(1, 0) = tmp01; *self.elem_mut(0, 1) = tmp10; } } impl<T:Copy + Num> Mat2<T> { /// Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`. /// ~~~ /// c0 c1 /// +-----+-----+ /// r0 | val | 0 | /// +-----+-----+ /// r1 | 0 | val | /// +-----+-----+ /// ~~~ #[inline] pub fn from_value(value: T) -> Mat2<T> { Mat2::new(value, Zero::zero(), Zero::zero(), value) } /// Returns the multiplicative identity matrix /// ~~~ /// c0 c1 /// +----+----+ /// r0 | 1 | 0 | /// +----+----+ /// r1 | 0 | 1 | /// +----+----+ /// ~~~ #[inline] pub fn identity() -> Mat2<T> { Mat2::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>()) } /// Returns the additive identity matrix /// ~~~ /// c0 c1 /// +----+----+ /// r0 | 0 | 0 | /// +----+----+ /// r1 | 0 | 0 | /// +----+----+ /// ~~~ #[inline] pub fn zero() -> Mat2<T> { Mat2::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>()) } #[inline] pub fn mul_t(&self, value: T) -> Mat2<T> { Mat2::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value)) } #[inline] pub fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> { Vec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline] pub fn add_m(&self, other: &Mat2<T>) -> Mat2<T> { Mat2::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1))) } #[inline] pub fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> { Mat2::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1))) } #[inline] pub fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> { Mat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1))) } #[inline] pub fn mul_self_t(&mut self, value: T) { self.x.mul_self_t(value); self.y.mul_self_t(value); } #[inline] pub fn add_self_m(&mut self, other: &Mat2<T>) { self.x.add_self_v(other.col(0)); self.y.add_self_v(other.col(1)); } #[inline] pub fn sub_self_m(&mut self, other: &Mat2<T>) { self.x.sub_self_v(other.col(0)); self.y.sub_self_v(other.col(1)); } pub fn dot(&self, other: &Mat2<T>) -> T { other.transpose().mul_m(self).trace() } pub fn determinant(&self) -> T { *self.col(0).index(0) * *self.col(1).index(1) - *self.col(1).index(0) * *self.col(0).index(1) } pub fn trace(&self) -> T { *self.col(0).index(0) + *self.col(1).index(1) } #[inline] pub fn to_identity(&mut self) { *self = Mat2::identity(); } #[inline] pub fn to_zero(&mut self) { *self = Mat2::zero(); } /// Returns the the matrix with an extra row and column added /// ~~~ /// c0 c1 c0 c1 c2 /// +----+----+ +----+----+----+ /// r0 | a | b | r0 | a | b | 0 | /// +----+----+ +----+----+----+ /// r1 | c | d | => r1 | c | d | 0 | /// +----+----+ +----+----+----+ /// r2 | 0 | 0 | 1 | /// +----+----+----+ /// ~~~ #[inline] pub fn to_mat3(&self) -> Mat3<T> { Mat3::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /// Returns the the matrix with an extra two rows and columns added /// ~~~ /// c0 c1 c0 c1 c2 c3 /// +----+----+ +----+----+----+----+ /// r0 | a | b | r0 | a | b | 0 | 0 | /// +----+----+ +----+----+----+----+ /// r1 | c | d | => r1 | c | d | 0 | 0 | /// +----+----+ +----+----+----+----+ /// r2 | 0 | 0 | 1 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 1 | /// +----+----+----+----+ /// ~~~ #[inline] pub fn to_mat4(&self) -> Mat4<T> { Mat4::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one(), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } } impl<T:Copy + Num> Neg<Mat2<T>> for Mat2<T> { #[inline] pub fn neg(&self) -> Mat2<T> { Mat2::from_cols(-self.col(0), -self.col(1)) } } impl<T:Copy + Real> Mat2<T> { #[inline] pub fn from_angle(radians: T) -> Mat2<T> { let cos_theta = radians.cos(); let sin_theta = radians.sin(); Mat2::new(cos_theta, -sin_theta, sin_theta, cos_theta) } } impl<T:Copy + Real + ApproxEq<T>> Mat2<T> { #[inline] pub fn inverse(&self) -> Option<Mat2<T>> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { Some(Mat2::new(self.elem(1, 1) / d, -self.elem(0, 1) / d, -self.elem(1, 0) / d, self.elem(0, 0) / d)) } } #[inline] pub fn invert_self(&mut self) { *self = self.inverse().expect("Couldn't invert the matrix!"); } #[inline] pub fn is_identity(&self) -> bool { self.approx_eq(&Mat2::identity()) } #[inline] pub fn is_diagonal(&self) -> bool { self.elem(0, 1).approx_eq(&Zero::zero()) && self.elem(1, 0).approx_eq(&Zero::zero()) } #[inline] pub fn is_rotated(&self) -> bool { !self.approx_eq(&Mat2::identity()) } #[inline] pub fn is_symmetric(&self) -> bool { self.elem(0, 1).approx_eq(self.elem(1, 0)) && self.elem(1, 0).approx_eq(self.elem(0, 1)) } #[inline] pub fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } } impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat2<T> { #[inline] pub fn approx_epsilon() -> T { ApproxEq::approx_epsilon::<T,T>() } #[inline] pub fn approx_eq(&self, other: &Mat2<T>) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>()) } #[inline] pub fn approx_eq_eps(&self, other: &Mat2<T>, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) } }