cgmath/src/mat2.rs

453 lines
12 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::sys::size_of;
use core::util::swap;
use core::vec::raw::buf_as_slice;
use std::cmp::{FuzzyEq, FUZZY_EPSILON};
use numeric::*;
use numeric::number::Number;
use numeric::number::Number::{zero,one};
use vec::{
Vec2,
Vector2,
MutableVector,
NumericVector,
MutableNumericVector,
vec2,
dvec2,
};
use mat::{
Mat3,
Mat4,
Matrix,
Matrix2,
Matrix3,
Matrix4,
MutableMatrix,
};
/**
* A 2 x 2 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
impl<T:Copy + Float + FuzzyEq<T> + Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Neg<T>> Matrix<T, Vec2<T>> for Mat2<T> {
#[inline(always)]
fn col(&self, i: uint) -> Vec2<T> { self[i] }
#[inline(always)]
fn row(&self, i: uint) -> Vec2<T> {
Vector2::new(self[0][i],
self[1][i])
}
/**
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1
* +-----+-----+
* r0 | val | 0 |
* +-----+-----+
* r1 | 0 | val |
* +-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat2<T> {
Matrix2::new(value, zero(),
zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 1 | 0 |
* +----+----+
* r1 | 0 | 1 |
* +----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat2<T> {
Matrix2::new( one::<T>(), zero::<T>(),
zero::<T>(), one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 0 | 0 |
* +----+----+
* r1 | 0 | 0 |
* +----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat2<T> {
Matrix2::new(zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat2<T> {
Matrix2::from_cols(self[0].mul_t(value),
self[1].mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vector2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Matrix2::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]))
}
#[inline(always)]
fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Matrix2::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]))
}
#[inline(always)]
fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Matrix2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)))
}
fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
self[0][0] * self[1][1] - self[1][0] * self[0][1]
}
fn trace(&self) -> T {
self[0][0] + self[1][1]
}
#[inline(always)]
fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.fuzzy_eq(&zero()) {
None
} else {
Some(Matrix2::new( self[1][1]/d, -self[0][1]/d,
-self[1][0]/d, self[0][0]/d))
}
}
#[inline(always)]
fn transpose(&self) -> Mat2<T> {
Matrix2::new(self[0][0], self[1][0],
self[0][1], self[1][1])
}
#[inline(always)]
fn is_identity(&self) -> bool {
self.fuzzy_eq(&Matrix::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self[0][1].fuzzy_eq(&zero()) &&
self[1][0].fuzzy_eq(&zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
!self.fuzzy_eq(&Matrix::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[1][0].fuzzy_eq(&self[0][1])
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat2<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
impl<T:Copy + Float + FuzzyEq<T> + Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Neg<T>> MutableMatrix<T, Vec2<T> > for Mat2<T> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &'self mut Vec2<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
_ => fail!(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
*self.col_mut(a) <-> *self.col_mut(b);
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat2<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
(*self) = Matrix::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
(*self) = Matrix::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.x.mul_self_t(value);
self.y.mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat2<T>) {
self.x.add_self_v(&other[0]);
self.y.add_self_v(&other[1]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat2<T>) {
self.x.sub_self_v(&other[0]);
self.y.sub_self_v(&other[1]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
swap(self.x.index_mut(1), self.y.index_mut(0));
swap(self.y.index_mut(0), self.x.index_mut(1));
}
}
impl<T:Copy + Float + FuzzyEq<T> + Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Neg<T>> Matrix2<T, Vec2<T>> for Mat2<T> {
/**
* Construct a 2 x 2 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1` - the first column of the matrix
* * `c1r0`, `c1r1` - the second column of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0r0 | c1r0 |
* +------+------+
* r1 | c0r1 | c1r1 |
* +------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Matrix2::from_cols(Vector2::new::<T,Vec2<T>>(c0r0, c0r1),
Vector2::new::<T,Vec2<T>>(c1r0, c1r1))
}
/**
* Construct a 2 x 2 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0.x | c1.x |
* +------+------+
* r1 | c0.y | c1.y |
* +------+------+
* ~~~
*/
#[inline(always)]
fn from_cols(c0: Vec2<T>,
c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: c0, y: c1 }
}
#[inline(always)]
fn from_angle(radians: T) -> Mat2<T> {
let cos_theta = cos(radians);
let sin_theta = sin(radians);
Matrix2::new(cos_theta, -sin_theta,
sin_theta, cos_theta)
}
/**
* Returns the the matrix with an extra row and column added
* ~~~
* c0 c1 c0 c1 c2
* +----+----+ +----+----+----+
* r0 | a | b | r0 | a | b | 0 |
* +----+----+ +----+----+----+
* r1 | c | d | => r1 | c | d | 0 |
* +----+----+ +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat3(&self) -> Mat3<T> {
Matrix3::new(self[0][0], self[0][1], zero(),
self[1][0], self[1][1], zero(),
zero(), zero(), one())
}
/**
* Returns the the matrix with an extra two rows and columns added
* ~~~
* c0 c1 c0 c1 c2 c3
* +----+----+ +----+----+----+----+
* r0 | a | b | r0 | a | b | 0 | 0 |
* +----+----+ +----+----+----+----+
* r1 | c | d | => r1 | c | d | 0 | 0 |
* +----+----+ +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat4(&self) -> Mat4<T> {
Matrix4::new(self[0][0], self[0][1], zero(), zero(),
self[1][0], self[1][1], zero(), zero(),
zero(), zero(), one(), zero(),
zero(), zero(), zero(), one())
}
}
impl<T:Copy> Index<uint, Vec2<T>> for Mat2<T> {
#[inline(always)]
fn index(&self, i: uint) -> Vec2<T> {
unsafe { do buf_as_slice(
transmute::<*Mat2<T>, *Vec2<T>>(
to_unsafe_ptr(self)), 2) |slice| { slice[i] }
}
}
}
impl<T:Copy + Float + FuzzyEq<T> + Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Neg<T>> Neg<Mat2<T>> for Mat2<T> {
#[inline(always)]
fn neg(&self) -> Mat2<T> {
Matrix2::from_cols(-self[0], -self[1])
}
}
impl<T:Copy + Float + FuzzyEq<T>> FuzzyEq<T> for Mat2<T> {
#[inline(always)]
fn fuzzy_eq(&self, other: &Mat2<T>) -> bool {
self.fuzzy_eq_eps(other, &Number::from(FUZZY_EPSILON))
}
#[inline(always)]
fn fuzzy_eq_eps(&self, other: &Mat2<T>, epsilon: &T) -> bool {
self[0].fuzzy_eq_eps(&other[0], epsilon) &&
self[1].fuzzy_eq_eps(&other[1], epsilon)
}
}
// GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification]
// (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf).
pub type mat2 = Mat2<f32>; // a 2×2 single-precision floating-point matrix
pub type dmat2 = Mat2<f64>; // a 2×2 double-precision floating-point matrix
// Static method wrappers for GLSL-style types
pub impl mat2 {
#[inline(always)] fn new(c0r0: f32, c0r1: f32, c1r0: f32, c1r1: f32)
-> mat2 { Matrix2::new(c0r0, c0r1, c1r0, c1r1) }
#[inline(always)] fn from_cols(c0: vec2, c1: vec2)
-> mat2 { Matrix2::from_cols(c0, c1) }
#[inline(always)] fn from_value(v: f32) -> mat2 { Matrix::from_value(v) }
#[inline(always)] fn identity() -> mat2 { Matrix::identity() }
#[inline(always)] fn zero() -> mat2 { Matrix::zero() }
#[inline(always)] fn from_angle(radians: f32) -> mat2 { Matrix2::from_angle(radians) }
#[inline(always)] fn dim() -> uint { 2 }
#[inline(always)] fn rows() -> uint { 2 }
#[inline(always)] fn cols() -> uint { 2 }
#[inline(always)] fn size_of() -> uint { size_of::<mat2>() }
}
pub impl dmat2 {
#[inline(always)] fn new(c0r0: f64, c0r1: f64, c1r0: f64, c1r1: f64)
-> dmat2 { Matrix2::new(c0r0, c0r1, c1r0, c1r1) }
#[inline(always)] fn from_cols(c0: dvec2, c1: dvec2)
-> dmat2 { Matrix2::from_cols(c0, c1) }
#[inline(always)] fn from_value(v: f64) -> dmat2 { Matrix::from_value(v) }
#[inline(always)] fn identity() -> dmat2 { Matrix::identity() }
#[inline(always)] fn zero() -> dmat2 { Matrix::zero() }
#[inline(always)] fn from_angle(radians: f64) -> dmat2 { Matrix2::from_angle(radians) }
#[inline(always)] fn dim() -> uint { 2 }
#[inline(always)] fn rows() -> uint { 2 }
#[inline(always)] fn cols() -> uint { 2 }
#[inline(always)] fn size_of() -> uint { size_of::<dmat2>() }
}