131 lines
4.2 KiB
Rust
131 lines
4.2 KiB
Rust
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
|
|
// refer to the AUTHORS file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
use std::mem::transmute;
|
|
use std::fmt;
|
|
use std::num::Zero;
|
|
|
|
use approx::ApproxEq;
|
|
use intersect::Intersect;
|
|
use num::BaseFloat;
|
|
use point::{Point, Point3};
|
|
use ray::Ray3;
|
|
use vector::{Vector3, Vector4};
|
|
use vector::{Vector, EuclideanVector};
|
|
|
|
|
|
/// A 3-dimensional plane formed from the equation: `A*x + B*y + C*z - D = 0`.
|
|
///
|
|
/// # Fields
|
|
///
|
|
/// - `n`: a unit vector representing the normal of the plane where:
|
|
/// - `n.x`: corresponds to `A` in the plane equation
|
|
/// - `n.y`: corresponds to `B` in the plane equation
|
|
/// - `n.z`: corresponds to `C` in the plane equation
|
|
/// - `d`: the distance value, corresponding to `D` in the plane equation
|
|
///
|
|
/// # Notes
|
|
///
|
|
/// The `A*x + B*y + C*z - D = 0` form is preferred over the other common
|
|
/// alternative, `A*x + B*y + C*z + D = 0`, because it tends to avoid
|
|
/// superfluous negations (see _Real Time Collision Detection_, p. 55).
|
|
#[deriving(Clone, PartialEq)]
|
|
pub struct Plane<S> {
|
|
pub n: Vector3<S>,
|
|
pub d: S,
|
|
}
|
|
|
|
impl<S: BaseFloat> Plane<S> {
|
|
/// Construct a plane from a normal vector and a scalar distance. The
|
|
/// plane will be perpendicular to `n`, and `d` units offset from the
|
|
/// origin.
|
|
pub fn new(n: Vector3<S>, d: S) -> Plane<S> {
|
|
Plane { n: n, d: d }
|
|
}
|
|
|
|
/// # Arguments
|
|
///
|
|
/// - `a`: the `x` component of the normal
|
|
/// - `b`: the `y` component of the normal
|
|
/// - `c`: the `z` component of the normal
|
|
/// - `d`: the plane's distance value
|
|
pub fn from_abcd(a: S, b: S, c: S, d: S) -> Plane<S> {
|
|
Plane { n: Vector3::new(a, b, c), d: d }
|
|
}
|
|
|
|
/// Construct a plane from the components of a four-dimensional vector
|
|
pub fn from_vector4(v: Vector4<S>) -> Plane<S> {
|
|
unsafe { transmute(v) }
|
|
}
|
|
|
|
/// Constructs a plane that passes through the the three points `a`, `b` and `c`
|
|
pub fn from_points(a: Point3<S>, b: Point3<S>, c: Point3<S>) -> Option<Plane<S>> {
|
|
// create two vectors that run parallel to the plane
|
|
let v0 = b.sub_p(&a);
|
|
let v1 = c.sub_p(&a);
|
|
|
|
// find the normal vector that is perpendicular to v1 and v2
|
|
let mut n = v0.cross(&v1);
|
|
|
|
if n.approx_eq(&Vector3::zero()) { None }
|
|
else {
|
|
// compute the normal and the distance to the plane
|
|
n.normalize_self();
|
|
let d = -a.dot(&n);
|
|
|
|
Some(Plane::new(n, d))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Intersect<Option<Point3<S>>> for (Plane<S>, Ray3<S>) {
|
|
fn intersection(&self) -> Option<Point3<S>> {
|
|
match *self {
|
|
(ref p, ref r) => {
|
|
let t = -(p.d + r.origin.dot(&p.n)) / r.direction.dot(&p.n);
|
|
if t < Zero::zero() { None }
|
|
else { Some(r.origin.add_v(&r.direction.mul_s(t))) }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Intersect<Option<Ray3<S>>> for (Plane<S>, Plane<S>) {
|
|
fn intersection(&self) -> Option<Ray3<S>> {
|
|
fail!("Not yet implemented");
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Intersect<Option<Point3<S>>> for (Plane<S>, Plane<S>, Plane<S>) {
|
|
fn intersection(&self) -> Option<Point3<S>> {
|
|
fail!("Not yet implemented");
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat + ApproxEq<S>>
|
|
ApproxEq<S> for Plane<S> {
|
|
#[inline]
|
|
fn approx_eq_eps(&self, other: &Plane<S>, epsilon: &S) -> bool {
|
|
self.n.approx_eq_eps(&other.n, epsilon) &&
|
|
self.d.approx_eq_eps(&other.d, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> fmt::Show for Plane<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{:f}x + {:f}y + {:f}z - {:f} = 0",
|
|
self.n.x, self.n.y, self.n.z, self.d)
|
|
}
|
|
}
|