cgmath/tests/matrix.rs
Jordan Miner c11371794f Fix Euler angle to matrix conversion
The equations were written with rows horizontally instead of vertically
and some signs were wrong.
2016-05-12 01:28:16 -05:00

720 lines
26 KiB
Rust

// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[macro_use]
extern crate cgmath;
pub mod matrix2 {
use std::f64;
use cgmath::*;
const A: Matrix2<f64> = Matrix2 { x: Vector2 { x: 1.0f64, y: 3.0f64 },
y: Vector2 { x: 2.0f64, y: 4.0f64 } };
const B: Matrix2<f64> = Matrix2 { x: Vector2 { x: 2.0f64, y: 4.0f64 },
y: Vector2 { x: 3.0f64, y: 5.0f64 } };
const C: Matrix2<f64> = Matrix2 { x: Vector2 { x: 2.0f64, y: 1.0f64 },
y: Vector2 { x: 1.0f64, y: 2.0f64 } };
const V: Vector2<f64> = Vector2 { x: 1.0f64, y: 2.0f64 };
const F: f64 = 0.5;
#[test]
fn test_neg() {
assert_eq!(-A,
Matrix2::new(-1.0f64, -3.0f64,
-2.0f64, -4.0f64));
}
#[test]
fn test_mul_scalar() {
let result = Matrix2::new(0.5f64, 1.5f64,
1.0f64, 2.0f64) ;
assert_eq!(A * F, result);
assert_eq!(F * A, result);
}
#[test]
fn test_div_scalar() {
assert_eq!(A / F,
Matrix2::new(2.0f64, 6.0f64,
4.0f64, 8.0f64));
assert_eq!(4.0f64 / C,
Matrix2::new(2.0f64, 4.0f64,
4.0f64, 2.0f64));
}
#[test]
fn test_rem_scalar() {
assert_eq!(A % 3.0f64,
Matrix2::new(1.0f64, 0.0f64,
2.0f64, 1.0f64));
assert_eq!(3.0f64 % A,
Matrix2::new(0.0f64, 0.0f64,
1.0f64, 3.0f64));
}
#[test]
fn test_add_matrix() {
assert_eq!(A + B,
Matrix2::new(3.0f64, 7.0f64,
5.0f64, 9.0f64));
}
#[test]
fn test_sub_matrix() {
assert_eq!(A - B,
Matrix2::new(-1.0f64, -1.0f64,
-1.0f64, -1.0f64));
}
#[test]
fn test_mul_vector() {
assert_eq!(A * V, Vector2::new(5.0f64, 11.0f64));
}
#[test]
fn test_mul_matrix() {
assert_eq!(A * B,
Matrix2::new(10.0f64, 22.0f64,
13.0f64, 29.0f64));
assert_eq!(A * B, &A * &B);
}
#[test]
fn test_determinant() {
assert_eq!(A.determinant(), -2.0f64)
}
#[test]
fn test_trace() {
assert_eq!(A.trace(), 5.0f64);
}
#[test]
fn test_transpose() {
assert_eq!(A.transpose(),
Matrix2::<f64>::new(1.0f64, 2.0f64,
3.0f64, 4.0f64));
}
#[test]
fn test_transpose_self() {
let mut mut_a = A;
mut_a.transpose_self();
assert_eq!(mut_a, A.transpose());
}
#[test]
fn test_invert() {
assert!(Matrix2::<f64>::identity().invert().unwrap().is_identity());
assert_eq!(A.invert().unwrap(),
Matrix2::new(-2.0f64, 1.5f64,
1.0f64, -0.5f64));
assert!(Matrix2::new(0.0f64, 2.0f64,
0.0f64, 5.0f64).invert().is_none());
}
#[test]
fn test_predicates() {
assert!(Matrix2::<f64>::identity().is_identity());
assert!(Matrix2::<f64>::identity().is_symmetric());
assert!(Matrix2::<f64>::identity().is_diagonal());
assert!(Matrix2::<f64>::identity().is_invertible());
assert!(!A.is_identity());
assert!(!A.is_symmetric());
assert!(!A.is_diagonal());
assert!(A.is_invertible());
assert!(!C.is_identity());
assert!(C.is_symmetric());
assert!(!C.is_diagonal());
assert!(C.is_invertible());
assert!(Matrix2::from_value(6.0f64).is_diagonal());
}
#[test]
fn test_from_angle() {
// Rotate the vector (1, 0) by π/2 radians to the vector (0, 1)
let rot1 = Matrix2::from_angle(rad(0.5f64 * f64::consts::PI));
assert_approx_eq!(rot1 * Vector2::unit_x(), &Vector2::unit_y());
// Rotate the vector (-1, 0) by -π/2 radians to the vector (0, 1)
let rot2 = -rot1;
assert_approx_eq!(rot2 * -Vector2::unit_x(), &Vector2::unit_y());
// Rotate the vector (1, 1) by π radians to the vector (-1, -1)
let rot3: Matrix2<f64> = Matrix2::from_angle(rad(f64::consts::PI));
assert_approx_eq!(rot3 * Vector2::new(1.0, 1.0), &Vector2::new(-1.0, -1.0));
}
}
pub mod matrix3 {
use cgmath::*;
const A: Matrix3<f64> = Matrix3 { x: Vector3 { x: 1.0f64, y: 4.0f64, z: 7.0f64 },
y: Vector3 { x: 2.0f64, y: 5.0f64, z: 8.0f64 },
z: Vector3 { x: 3.0f64, y: 6.0f64, z: 9.0f64 } };
const B: Matrix3<f64> = Matrix3 { x: Vector3 { x: 2.0f64, y: 5.0f64, z: 8.0f64 },
y: Vector3 { x: 3.0f64, y: 6.0f64, z: 9.0f64 },
z: Vector3 { x: 4.0f64, y: 7.0f64, z: 10.0f64 } };
const C: Matrix3<f64> = Matrix3 { x: Vector3 { x: 2.0f64, y: 4.0f64, z: 6.0f64 },
y: Vector3 { x: 0.0f64, y: 2.0f64, z: 4.0f64 },
z: Vector3 { x: 0.0f64, y: 0.0f64, z: 1.0f64 } };
const D: Matrix3<f64> = Matrix3 { x: Vector3 { x: 3.0f64, y: 2.0f64, z: 1.0f64 },
y: Vector3 { x: 2.0f64, y: 3.0f64, z: 2.0f64 },
z: Vector3 { x: 1.0f64, y: 2.0f64, z: 3.0f64 } };
const V: Vector3<f64> = Vector3 { x: 1.0f64, y: 2.0f64, z: 3.0f64 };
const F: f64 = 0.5;
#[test]
fn test_neg() {
assert_eq!(-A,
Matrix3::new(-1.0f64, -4.0f64, -7.0f64,
-2.0f64, -5.0f64, -8.0f64,
-3.0f64, -6.0f64, -9.0f64));
}
#[test]
fn test_mul_scalar() {
let result = Matrix3::new(0.5f64, 2.0f64, 3.5f64,
1.0f64, 2.5f64, 4.0f64,
1.5f64, 3.0f64, 4.5f64);
assert_eq!(A * F, result);
assert_eq!(F * A, result);
}
#[test]
fn test_div_scalar() {
assert_eq!(A / F,
Matrix3::new(2.0f64, 8.0f64, 14.0f64,
4.0f64, 10.0f64, 16.0f64,
6.0f64, 12.0f64, 18.0f64));
assert_eq!(6.0f64 / D,
Matrix3::new(2.0f64, 3.0f64, 6.0f64,
3.0f64, 2.0f64, 3.0f64,
6.0f64, 3.0f64, 2.0f64));
}
#[test]
fn test_rem_scalar() {
assert_eq!(A % 3.0f64,
Matrix3::new(1.0f64, 1.0f64, 1.0f64,
2.0f64, 2.0f64, 2.0f64,
0.0f64, 0.0f64, 0.0f64));
assert_eq!(9.0f64 % A,
Matrix3::new(0.0f64, 1.0f64, 2.0f64,
1.0f64, 4.0f64, 1.0f64,
0.0f64, 3.0f64, 0.0f64));
}
#[test]
fn test_add_matrix() {
assert_eq!(A + B,
Matrix3::new(3.0f64, 9.0f64, 15.0f64,
5.0f64, 11.0f64, 17.0f64,
7.0f64, 13.0f64, 19.0f64));
}
#[test]
fn test_sub_matrix() {
assert_eq!(A - B,
Matrix3::new(-1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64));
}
#[test]
fn test_mul_vector() {
assert_eq!(A * V, Vector3::new(14.0f64, 32.0f64, 50.0f64));
}
#[test]
fn test_mul_matrix() {
assert_eq!(A * B,
Matrix3::new(36.0f64, 81.0f64, 126.0f64,
42.0f64, 96.0f64, 150.0f64,
48.0f64, 111.0f64, 174.0f64));
assert_eq!(A * B, &A * &B);
}
#[test]
fn test_determinant() {;
assert_eq!(A.determinant(), 0.0f64);
}
#[test]
fn test_trace() {
assert_eq!(A.trace(), 15.0f64);
}
#[test]
fn test_transpose() {
assert_eq!(A.transpose(),
Matrix3::<f64>::new(1.0f64, 2.0f64, 3.0f64,
4.0f64, 5.0f64, 6.0f64,
7.0f64, 8.0f64, 9.0f64));
}
#[test]
fn test_transpose_self() {
let mut mut_a = A;
mut_a.transpose_self();
assert_eq!(mut_a, A.transpose());
}
#[test]
fn test_invert() {
assert!(Matrix3::<f64>::identity().invert().unwrap().is_identity());
assert_eq!(A.invert(), None);
assert_eq!(C.invert().unwrap(),
Matrix3::new(0.5f64, -1.0f64, 1.0f64,
0.0f64, 0.5f64, -2.0f64,
0.0f64, 0.0f64, 1.0f64));
}
#[test]
fn test_predicates() {
assert!(Matrix3::<f64>::identity().is_identity());
assert!(Matrix3::<f64>::identity().is_symmetric());
assert!(Matrix3::<f64>::identity().is_diagonal());
assert!(Matrix3::<f64>::identity().is_invertible());
assert!(!A.is_identity());
assert!(!A.is_symmetric());
assert!(!A.is_diagonal());
assert!(!A.is_invertible());
assert!(!D.is_identity());
assert!(D.is_symmetric());
assert!(!D.is_diagonal());
assert!(D.is_invertible());
assert!(Matrix3::from_value(6.0f64).is_diagonal());
}
mod from_axis_x {
use cgmath::*;
fn check_from_axis_angle_x(pitch: Rad<f32>) {
let found = Matrix3::from_angle_x(pitch);
let expected = Matrix3::from(Euler { x: pitch, y: rad(0.0), z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001);
}
#[test] fn test_zero() { check_from_axis_angle_x(rad(0.0)); }
#[test] fn test_pos_1() { check_from_axis_angle_x(rad(1.0)); }
#[test] fn test_neg_1() { check_from_axis_angle_x(rad(-1.0)); }
}
mod from_axis_y {
use cgmath::*;
fn check_from_axis_angle_y(yaw: Rad<f32>) {
let found = Matrix3::from_angle_y(yaw);
let expected = Matrix3::from(Euler { x: rad(0.0), y: yaw, z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001);
}
#[test] fn test_zero() { check_from_axis_angle_y(rad(0.0)); }
#[test] fn test_pos_1() { check_from_axis_angle_y(rad(1.0)); }
#[test] fn test_neg_1() { check_from_axis_angle_y(rad(-1.0)); }
}
mod from_axis_z {
use cgmath::*;
fn check_from_axis_angle_z(roll: Rad<f32>) {
let found = Matrix3::from_angle_z(roll);
let expected = Matrix3::from(Euler { x: rad(0.0), y: rad(0.0), z: roll });
assert_approx_eq_eps!(found, expected, 0.001);
}
#[test] fn test_zero() { check_from_axis_angle_z(rad(0.0)); }
#[test] fn test_pos_1() { check_from_axis_angle_z(rad(1.0)); }
#[test] fn test_neg_1() { check_from_axis_angle_z(rad(-1.0)); }
}
mod from_axis_angle {
mod axis_x {
use cgmath::*;
fn check_from_axis_angle_x(pitch: Rad<f32>) {
let found = Matrix3::from_axis_angle(Vector3::unit_x(), pitch);
let expected = Matrix3::from(Euler { x: pitch, y: rad(0.0), z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001);
}
#[test] fn test_zero() { check_from_axis_angle_x(rad(0.0)); }
#[test] fn test_pos_1() { check_from_axis_angle_x(rad(1.0)); }
#[test] fn test_neg_1() { check_from_axis_angle_x(rad(-1.0)); }
}
mod axis_y {
use cgmath::*;
fn check_from_axis_angle_y(yaw: Rad<f32>) {
let found = Matrix3::from_axis_angle(Vector3::unit_y(), yaw);
let expected = Matrix3::from(Euler { x: rad(0.0), y: yaw, z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001);
}
#[test] fn test_zero() { check_from_axis_angle_y(rad(0.0)); }
#[test] fn test_pos_1() { check_from_axis_angle_y(rad(1.0)); }
#[test] fn test_neg_1() { check_from_axis_angle_y(rad(-1.0)); }
}
mod axis_z {
use cgmath::*;
fn check_from_axis_angle_z(roll: Rad<f32>) {
let found = Matrix3::from_axis_angle(Vector3::unit_z(), roll);
let expected = Matrix3::from(Euler { x: rad(0.0), y: rad(0.0), z: roll });
assert_approx_eq_eps!(found, expected, 0.001);
}
#[test] fn test_zero() { check_from_axis_angle_z(rad(0.0)); }
#[test] fn test_pos_1() { check_from_axis_angle_z(rad(1.0)); }
#[test] fn test_neg_1() { check_from_axis_angle_z(rad(-1.0)); }
}
}
mod rotate_from_euler {
use cgmath::*;
#[test]
fn test_x() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Matrix3::from(Euler::new(deg(90.0).into(), rad(0.0), rad(0.0)));
assert_approx_eq!(vec3(0.0, -1.0, 0.0), rot * vec);
let rot = Matrix3::from(Euler::new(deg(-90.0).into(), rad(0.0), rad(0.0)));
assert_approx_eq!(vec3(0.0, 1.0, 0.0), rot * vec);
}
#[test]
fn test_y() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Matrix3::from(Euler::new(rad(0.0), deg(90.0).into(), rad(0.0)));
assert_approx_eq!(vec3(1.0, 0.0, 0.0), rot * vec);
let rot = Matrix3::from(Euler::new(rad(0.0), deg(-90.0).into(), rad(0.0)));
assert_approx_eq!(vec3(-1.0, 0.0, 0.0), rot * vec);
}
#[test]
fn test_z() {
let vec = vec3(1.0, 0.0, 0.0);
let rot = Matrix3::from(Euler::new(rad(0.0), rad(0.0), deg(90.0).into()));
assert_approx_eq!(vec3(0.0, 1.0, 0.0), rot * vec);
let rot = Matrix3::from(Euler::new(rad(0.0), rad(0.0), deg(-90.0).into()));
assert_approx_eq!(vec3(0.0, -1.0, 0.0), rot * vec);
}
// tests that the Y rotation is done after the X
#[test]
fn test_x_then_y() {
let vec = vec3(0.0, 1.0, 0.0);
let rot = Matrix3::from(Euler::new(deg(90.0).into(), deg(90.0).into(), rad(0.0)));
assert_approx_eq!(vec3(0.0, 0.0, 1.0), rot * vec);
}
// tests that the Z rotation is done after the Y
#[test]
fn test_y_then_z() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Matrix3::from(Euler::new(rad(0.0), deg(90.0).into(), deg(90.0).into()));
assert_approx_eq!(vec3(1.0, 0.0, 0.0), rot * vec);
}
}
mod rotate_from_axis_angle {
use cgmath::*;
#[test]
fn test_x() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Matrix3::from_angle_x(deg(90.0).into());
println!("x mat: {:?}", rot);
assert_approx_eq!(vec3(0.0, -1.0, 0.0), rot * vec);
}
#[test]
fn test_y() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Matrix3::from_angle_y(deg(90.0).into());
assert_approx_eq!(vec3(1.0, 0.0, 0.0), rot * vec);
}
#[test]
fn test_z() {
let vec = vec3(1.0, 0.0, 0.0);
let rot = Matrix3::from_angle_z(deg(90.0).into());
assert_approx_eq!(vec3(0.0, 1.0, 0.0), rot * vec);
}
#[test]
fn test_xy() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Matrix3::from_axis_angle(vec3(1.0, 1.0, 0.0).normalize(), deg(90.0).into());
assert_approx_eq!(vec3(2.0f32.sqrt() / 2.0, -2.0f32.sqrt() / 2.0, 0.0), rot * vec);
}
#[test]
fn test_yz() {
let vec = vec3(1.0, 0.0, 0.0);
let rot = Matrix3::from_axis_angle(vec3(0.0, 1.0, 1.0).normalize(), deg(-90.0).into());
assert_approx_eq!(vec3(0.0, -2.0f32.sqrt() / 2.0, 2.0f32.sqrt() / 2.0), rot * vec);
}
#[test]
fn test_xz() {
let vec = vec3(0.0, 1.0, 0.0);
let rot = Matrix3::from_axis_angle(vec3(1.0, 0.0, 1.0).normalize(), deg(90.0).into());
assert_approx_eq!(vec3(-2.0f32.sqrt() / 2.0, 0.0, 2.0f32.sqrt() / 2.0), rot * vec);
}
}
}
pub mod matrix4 {
use cgmath::*;
const A: Matrix4<f64> = Matrix4 { x: Vector4 { x: 1.0f64, y: 5.0f64, z: 9.0f64, w: 13.0f64 },
y: Vector4 { x: 2.0f64, y: 6.0f64, z: 10.0f64, w: 14.0f64 },
z: Vector4 { x: 3.0f64, y: 7.0f64, z: 11.0f64, w: 15.0f64 },
w: Vector4 { x: 4.0f64, y: 8.0f64, z: 12.0f64, w: 16.0f64 } };
const B: Matrix4<f64> = Matrix4 { x: Vector4 { x: 2.0f64, y: 6.0f64, z: 10.0f64, w: 14.0f64 },
y: Vector4 { x: 3.0f64, y: 7.0f64, z: 11.0f64, w: 15.0f64 },
z: Vector4 { x: 4.0f64, y: 8.0f64, z: 12.0f64, w: 16.0f64 },
w: Vector4 { x: 5.0f64, y: 9.0f64, z: 13.0f64, w: 17.0f64 } };
const C: Matrix4<f64> = Matrix4 { x: Vector4 { x: 3.0f64, y: 2.0f64, z: 1.0f64, w: 1.0f64 },
y: Vector4 { x: 2.0f64, y: 3.0f64, z: 2.0f64, w: 2.0f64 },
z: Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 3.0f64 },
w: Vector4 { x: 0.0f64, y: 1.0f64, z: 1.0f64, w: 0.0f64 } };
const D: Matrix4<f64> = Matrix4 { x: Vector4 { x: 4.0f64, y: 3.0f64, z: 2.0f64, w: 1.0f64 },
y: Vector4 { x: 3.0f64, y: 4.0f64, z: 3.0f64, w: 2.0f64 },
z: Vector4 { x: 2.0f64, y: 3.0f64, z: 4.0f64, w: 3.0f64 },
w: Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 4.0f64 } };
const V: Vector4<f64> = Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 4.0f64 };
const F: f64 = 0.5;
#[test]
fn test_neg() {
assert_eq!(-A,
Matrix4::new(-1.0f64, -5.0f64, -9.0f64, -13.0f64,
-2.0f64, -6.0f64, -10.0f64, -14.0f64,
-3.0f64, -7.0f64, -11.0f64, -15.0f64,
-4.0f64, -8.0f64, -12.0f64, -16.0f64));
}
#[test]
fn test_mul_scalar() {
let result = Matrix4::new(0.5f64, 2.5f64, 4.5f64, 6.5f64,
1.0f64, 3.0f64, 5.0f64, 7.0f64,
1.5f64, 3.5f64, 5.5f64, 7.5f64,
2.0f64, 4.0f64, 6.0f64, 8.0f64);
assert_eq!(A * F, result);
assert_eq!(F * A, result);
}
#[test]
fn test_div_scalar() {
assert_eq!(A / F,
Matrix4::new(2.0f64, 10.0f64, 18.0f64, 26.0f64,
4.0f64, 12.0f64, 20.0f64, 28.0f64,
6.0f64, 14.0f64, 22.0f64, 30.0f64,
8.0f64, 16.0f64, 24.0f64, 32.0f64));
assert_eq!(12.0f64 / D,
Matrix4::new( 3.0f64, 4.0f64, 6.0f64, 12.0f64,
4.0f64, 3.0f64, 4.0f64, 6.0f64,
6.0f64, 4.0f64, 3.0f64, 4.0f64,
12.0f64, 6.0f64, 4.0f64, 3.0f64));
}
#[test]
fn test_rem_scalar() {
assert_eq!(A % 4.0f64,
Matrix4::new(1.0f64, 1.0f64, 1.0f64, 1.0f64,
2.0f64, 2.0f64, 2.0f64, 2.0f64,
3.0f64, 3.0f64, 3.0f64, 3.0f64,
0.0f64, 0.0f64, 0.0f64, 0.0f64));
assert_eq!(16.0f64 % A,
Matrix4::new(0.0f64, 1.0f64, 7.0f64, 3.0f64,
0.0f64, 4.0f64, 6.0f64, 2.0f64,
1.0f64, 2.0f64, 5.0f64, 1.0f64,
0.0f64, 0.0f64, 4.0f64, 0.0f64));
}
#[test]
fn test_add_matrix() {
assert_eq!(A + B,
Matrix4::new(3.0f64, 11.0f64, 19.0f64, 27.0f64,
5.0f64, 13.0f64, 21.0f64, 29.0f64,
7.0f64, 15.0f64, 23.0f64, 31.0f64,
9.0f64, 17.0f64, 25.0f64, 33.0f64));
}
#[test]
fn test_sub_matrix() {
assert_eq!(A - B,
Matrix4::new(-1.0f64, -1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64, -1.0f64));
}
#[test]
fn test_mul_vector() {
assert_eq!(A * V, Vector4::new(30.0f64, 70.0f64, 110.0f64, 150.0f64));
}
#[test]
fn test_mul_matrix() {
assert_eq!(A * B,
Matrix4::new(100.0f64, 228.0f64, 356.0f64, 484.0f64,
110.0f64, 254.0f64, 398.0f64, 542.0f64,
120.0f64, 280.0f64, 440.0f64, 600.0f64,
130.0f64, 306.0f64, 482.0f64, 658.0f64));
assert_eq!(A * B, &A * &B);
}
#[test]
fn test_determinant() {
assert_eq!(A.determinant(), 0.0f64);
}
#[test]
fn test_trace() {
assert_eq!(A.trace(), 34.0f64);
}
#[test]
fn test_transpose() {
assert_eq!(A.transpose(),
Matrix4::<f64>::new( 1.0f64, 2.0f64, 3.0f64, 4.0f64,
5.0f64, 6.0f64, 7.0f64, 8.0f64,
9.0f64, 10.0f64, 11.0f64, 12.0f64,
13.0f64, 14.0f64, 15.0f64, 16.0f64));
}
#[test]
fn test_transpose_self() {
let mut mut_a = A;
mut_a.transpose_self();
assert_eq!(mut_a, A.transpose());
}
#[test]
fn test_invert() {
assert!(Matrix4::<f64>::identity().invert().unwrap().is_identity());
assert!(C.invert().unwrap().approx_eq(&(
Matrix4::new( 5.0f64, -4.0f64, 1.0f64, 0.0f64,
-4.0f64, 8.0f64, -4.0f64, 0.0f64,
4.0f64, -8.0f64, 4.0f64, 8.0f64,
-3.0f64, 4.0f64, 1.0f64, -8.0f64) * 0.125f64)));
let mat_c = Matrix4::new(-0.131917f64, -0.76871f64, 0.625846f64, 0.0f64,
-0., 0.631364f64, 0.775487f64, 0.0f64,
-0.991261f64, 0.1023f64, -0.083287f64, 0.0f64,
0., -1.262728f64, -1.550973f64, 1.0f64);
assert!((mat_c.invert().unwrap() * mat_c).is_identity());
let mat_d = Matrix4::new( 0.065455f64, -0.720002f64, 0.690879f64, 0.0f64,
-0., 0.692364f64, 0.721549f64, 0.0f64,
-0.997856f64, -0.047229f64, 0.045318f64, 0.0f64,
0., -1.384727f64, -1.443098f64, 1.0f64);
assert!((mat_d.invert().unwrap() * mat_d).is_identity());
let mat_e = Matrix4::new( 0.409936f64, 0.683812f64, -0.603617f64, 0.0f64,
0., 0.661778f64, 0.7497f64, 0.0f64,
0.912114f64, -0.307329f64, 0.271286f64, 0.0f64,
-0., -1.323555f64, -1.499401f64, 1.0f64);
assert!((mat_e.invert().unwrap() * mat_e).is_identity());
let mat_f = Matrix4::new(-0.160691f64, -0.772608f64, 0.614211f64, 0.0f64,
-0., 0.622298f64, 0.78278f64, 0.0f64,
-0.987005f64, 0.125786f64, -0.099998f64, 0.0f64,
0., -1.244597f64, -1.565561f64, 1.0f64);
assert!((mat_f.invert().unwrap() * mat_f).is_identity());
}
#[test]
fn test_predicates() {
assert!(Matrix4::<f64>::identity().is_identity());
assert!(Matrix4::<f64>::identity().is_symmetric());
assert!(Matrix4::<f64>::identity().is_diagonal());
assert!(Matrix4::<f64>::identity().is_invertible());
assert!(!A.is_identity());
assert!(!A.is_symmetric());
assert!(!A.is_diagonal());
assert!(!A.is_invertible());
assert!(!D.is_identity());
assert!(D.is_symmetric());
assert!(!D.is_diagonal());
assert!(D.is_invertible());
assert!(Matrix4::from_value(6.0f64).is_diagonal());
}
#[test]
fn test_from_translation() {
let mat = Matrix4::from_translation(Vector3::new(1.0f64, 2.0f64, 3.0f64));
let vertex = Vector4::new(0.0f64, 0.0f64, 0.0f64, 1.0f64);
let res = mat * vertex;
assert_eq!(res, Vector4::new(1., 2., 3., 1.));
}
mod from {
use cgmath::*;
#[test]
fn test_quaternion() {
let quaternion = Quaternion::new(2f32, 3f32, 4f32, 5f32);
let matrix_short = Matrix4::from(quaternion);
let matrix_long = Matrix3::from(quaternion);
let matrix_long = Matrix4::from(matrix_long);
assert_approx_eq!(matrix_short, matrix_long);
}
}
}