571 lines
19 KiB
Rust
571 lines
19 KiB
Rust
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
|
|
// refer to the Cargo.toml file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! Points are fixed positions in affine space with no length or direction. This
|
|
//! distinguishes them from vectors, which have a length and direction, but do
|
|
//! not have a fixed position.
|
|
|
|
use num_traits::{Bounded, NumCast};
|
|
use std::fmt;
|
|
use std::mem;
|
|
use std::ops::*;
|
|
|
|
use structure::*;
|
|
|
|
use approx::ApproxEq;
|
|
use num::{BaseFloat, BaseNum};
|
|
use vector::{Vector1, Vector2, Vector3, Vector4};
|
|
|
|
#[cfg(feature = "mint")]
|
|
use mint;
|
|
|
|
/// A point in 1-dimensional space.
|
|
///
|
|
/// This type is marked as `#[repr(C)]`.
|
|
#[repr(C)]
|
|
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
|
|
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
|
|
pub struct Point1<S> {
|
|
pub x: S,
|
|
}
|
|
|
|
/// A point in 2-dimensional space.
|
|
///
|
|
/// This type is marked as `#[repr(C)]`.
|
|
#[repr(C)]
|
|
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
|
|
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
|
|
pub struct Point2<S> {
|
|
pub x: S,
|
|
pub y: S,
|
|
}
|
|
|
|
/// A point in 3-dimensional space.
|
|
///
|
|
/// This type is marked as `#[repr(C)]`.
|
|
#[repr(C)]
|
|
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
|
|
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
|
|
pub struct Point3<S> {
|
|
pub x: S,
|
|
pub y: S,
|
|
pub z: S,
|
|
}
|
|
|
|
impl<S: BaseNum> Point3<S> {
|
|
#[inline]
|
|
pub fn from_homogeneous(v: Vector4<S>) -> Point3<S> {
|
|
let e = v.truncate() * (S::one() / v.w);
|
|
Point3::new(e.x, e.y, e.z) //FIXME
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_homogeneous(self) -> Vector4<S> {
|
|
Vector4::new(self.x, self.y, self.z, S::one())
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_point {
|
|
($PointN:ident { $($field:ident),+ }, $VectorN:ident, $n:expr) => {
|
|
impl<S> $PointN<S> {
|
|
/// Construct a new point, using the provided values.
|
|
#[inline]
|
|
pub fn new($($field: S),+) -> $PointN<S> {
|
|
$PointN { $($field: $field),+ }
|
|
}
|
|
|
|
/// Perform the given operation on each field in the point, returning a new point
|
|
/// constructed from the operations.
|
|
#[inline]
|
|
pub fn map<U, F>(self, mut f: F) -> $PointN<U>
|
|
where F: FnMut(S) -> U
|
|
{
|
|
$PointN { $($field: f(self.$field)),+ }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> Array for $PointN<S> {
|
|
type Element = S;
|
|
|
|
#[inline]
|
|
fn len() -> usize {
|
|
$n
|
|
}
|
|
|
|
#[inline]
|
|
fn from_value(scalar: S) -> $PointN<S> {
|
|
$PointN { $($field: scalar),+ }
|
|
}
|
|
|
|
#[inline]
|
|
fn sum(self) -> S where S: Add<Output = S> {
|
|
fold_array!(add, { $(self.$field),+ })
|
|
}
|
|
|
|
#[inline]
|
|
fn product(self) -> S where S: Mul<Output = S> {
|
|
fold_array!(mul, { $(self.$field),+ })
|
|
}
|
|
}
|
|
|
|
impl<S: NumCast + Copy> $PointN<S> {
|
|
/// Component-wise casting to another type
|
|
#[inline]
|
|
pub fn cast<T: NumCast>(&self) -> Option<$PointN<T>> {
|
|
$(
|
|
let $field = match NumCast::from(self.$field) {
|
|
Some(field) => field,
|
|
None => return None
|
|
};
|
|
)+
|
|
Some($PointN { $($field),+ })
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> MetricSpace for $PointN<S> {
|
|
type Metric = S;
|
|
|
|
#[inline]
|
|
fn distance2(self, other: Self) -> S {
|
|
(other - self).magnitude2()
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> EuclideanSpace for $PointN<S> {
|
|
type Scalar = S;
|
|
type Diff = $VectorN<S>;
|
|
|
|
#[inline]
|
|
fn origin() -> $PointN<S> {
|
|
$PointN { $($field: S::zero()),+ }
|
|
}
|
|
|
|
#[inline]
|
|
fn from_vec(v: $VectorN<S>) -> $PointN<S> {
|
|
$PointN::new($(v.$field),+)
|
|
}
|
|
|
|
#[inline]
|
|
fn to_vec(self) -> $VectorN<S> {
|
|
$VectorN::new($(self.$field),+)
|
|
}
|
|
|
|
#[inline]
|
|
fn dot(self, v: $VectorN<S>) -> S {
|
|
$VectorN::new($(self.$field * v.$field),+).sum()
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> ApproxEq for $PointN<S> {
|
|
type Epsilon = S::Epsilon;
|
|
|
|
#[inline]
|
|
fn default_epsilon() -> S::Epsilon {
|
|
S::default_epsilon()
|
|
}
|
|
|
|
#[inline]
|
|
fn default_max_relative() -> S::Epsilon {
|
|
S::default_max_relative()
|
|
}
|
|
|
|
#[inline]
|
|
fn default_max_ulps() -> u32 {
|
|
S::default_max_ulps()
|
|
}
|
|
|
|
#[inline]
|
|
fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
|
|
$(S::relative_eq(&self.$field, &other.$field, epsilon, max_relative))&&+
|
|
}
|
|
|
|
#[inline]
|
|
fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
|
|
$(S::ulps_eq(&self.$field, &other.$field, epsilon, max_ulps))&&+
|
|
}
|
|
}
|
|
|
|
impl<S: Bounded> Bounded for $PointN<S> {
|
|
#[inline]
|
|
fn min_value() -> $PointN<S> {
|
|
$PointN { $($field: S::min_value()),+ }
|
|
}
|
|
|
|
#[inline]
|
|
fn max_value() -> $PointN<S> {
|
|
$PointN { $($field: S::max_value()),+ }
|
|
}
|
|
}
|
|
|
|
impl_operator!(<S: BaseNum> Add<$VectorN<S> > for $PointN<S> {
|
|
fn add(lhs, rhs) -> $PointN<S> { $PointN::new($(lhs.$field + rhs.$field),+) }
|
|
});
|
|
impl_operator!(<S: BaseNum> Sub<$VectorN<S>> for $PointN<S> {
|
|
fn sub(lhs, rhs) -> $PointN<S> { $PointN::new($(lhs.$field - rhs.$field),+) }
|
|
});
|
|
impl_assignment_operator!(<S: BaseNum> AddAssign<$VectorN<S> > for $PointN<S> {
|
|
fn add_assign(&mut self, vector) { $(self.$field += vector.$field);+ }
|
|
});
|
|
impl_assignment_operator!(<S: BaseNum> SubAssign<$VectorN<S>> for $PointN<S> {
|
|
fn sub_assign(&mut self, vector) { $(self.$field -= vector.$field);+ }
|
|
});
|
|
|
|
impl_operator!(<S: BaseNum> Sub<$PointN<S> > for $PointN<S> {
|
|
fn sub(lhs, rhs) -> $VectorN<S> { $VectorN::new($(lhs.$field - rhs.$field),+) }
|
|
});
|
|
|
|
impl_operator!(<S: BaseNum> Mul<S> for $PointN<S> {
|
|
fn mul(point, scalar) -> $PointN<S> { $PointN::new($(point.$field * scalar),+) }
|
|
});
|
|
impl_operator!(<S: BaseNum> Div<S> for $PointN<S> {
|
|
fn div(point, scalar) -> $PointN<S> { $PointN::new($(point.$field / scalar),+) }
|
|
});
|
|
impl_operator!(<S: BaseNum> Rem<S> for $PointN<S> {
|
|
fn rem(point, scalar) -> $PointN<S> { $PointN::new($(point.$field % scalar),+) }
|
|
});
|
|
impl_assignment_operator!(<S: BaseNum> MulAssign<S> for $PointN<S> {
|
|
fn mul_assign(&mut self, scalar) { $(self.$field *= scalar);+ }
|
|
});
|
|
impl_assignment_operator!(<S: BaseNum> DivAssign<S> for $PointN<S> {
|
|
fn div_assign(&mut self, scalar) { $(self.$field /= scalar);+ }
|
|
});
|
|
impl_assignment_operator!(<S: BaseNum> RemAssign<S> for $PointN<S> {
|
|
fn rem_assign(&mut self, scalar) { $(self.$field %= scalar);+ }
|
|
});
|
|
|
|
impl<S: BaseNum> ElementWise for $PointN<S> {
|
|
#[inline] fn add_element_wise(self, rhs: $PointN<S>) -> $PointN<S> { $PointN::new($(self.$field + rhs.$field),+) }
|
|
#[inline] fn sub_element_wise(self, rhs: $PointN<S>) -> $PointN<S> { $PointN::new($(self.$field - rhs.$field),+) }
|
|
#[inline] fn mul_element_wise(self, rhs: $PointN<S>) -> $PointN<S> { $PointN::new($(self.$field * rhs.$field),+) }
|
|
#[inline] fn div_element_wise(self, rhs: $PointN<S>) -> $PointN<S> { $PointN::new($(self.$field / rhs.$field),+) }
|
|
#[inline] fn rem_element_wise(self, rhs: $PointN<S>) -> $PointN<S> { $PointN::new($(self.$field % rhs.$field),+) }
|
|
|
|
#[inline] fn add_assign_element_wise(&mut self, rhs: $PointN<S>) { $(self.$field += rhs.$field);+ }
|
|
#[inline] fn sub_assign_element_wise(&mut self, rhs: $PointN<S>) { $(self.$field -= rhs.$field);+ }
|
|
#[inline] fn mul_assign_element_wise(&mut self, rhs: $PointN<S>) { $(self.$field *= rhs.$field);+ }
|
|
#[inline] fn div_assign_element_wise(&mut self, rhs: $PointN<S>) { $(self.$field /= rhs.$field);+ }
|
|
#[inline] fn rem_assign_element_wise(&mut self, rhs: $PointN<S>) { $(self.$field %= rhs.$field);+ }
|
|
}
|
|
|
|
impl<S: BaseNum> ElementWise<S> for $PointN<S> {
|
|
#[inline] fn add_element_wise(self, rhs: S) -> $PointN<S> { $PointN::new($(self.$field + rhs),+) }
|
|
#[inline] fn sub_element_wise(self, rhs: S) -> $PointN<S> { $PointN::new($(self.$field - rhs),+) }
|
|
#[inline] fn mul_element_wise(self, rhs: S) -> $PointN<S> { $PointN::new($(self.$field * rhs),+) }
|
|
#[inline] fn div_element_wise(self, rhs: S) -> $PointN<S> { $PointN::new($(self.$field / rhs),+) }
|
|
#[inline] fn rem_element_wise(self, rhs: S) -> $PointN<S> { $PointN::new($(self.$field % rhs),+) }
|
|
|
|
#[inline] fn add_assign_element_wise(&mut self, rhs: S) { $(self.$field += rhs);+ }
|
|
#[inline] fn sub_assign_element_wise(&mut self, rhs: S) { $(self.$field -= rhs);+ }
|
|
#[inline] fn mul_assign_element_wise(&mut self, rhs: S) { $(self.$field *= rhs);+ }
|
|
#[inline] fn div_assign_element_wise(&mut self, rhs: S) { $(self.$field /= rhs);+ }
|
|
#[inline] fn rem_assign_element_wise(&mut self, rhs: S) { $(self.$field %= rhs);+ }
|
|
}
|
|
|
|
impl_scalar_ops!($PointN<usize> { $($field),+ });
|
|
impl_scalar_ops!($PointN<u8> { $($field),+ });
|
|
impl_scalar_ops!($PointN<u16> { $($field),+ });
|
|
impl_scalar_ops!($PointN<u32> { $($field),+ });
|
|
impl_scalar_ops!($PointN<u64> { $($field),+ });
|
|
impl_scalar_ops!($PointN<isize> { $($field),+ });
|
|
impl_scalar_ops!($PointN<i8> { $($field),+ });
|
|
impl_scalar_ops!($PointN<i16> { $($field),+ });
|
|
impl_scalar_ops!($PointN<i32> { $($field),+ });
|
|
impl_scalar_ops!($PointN<i64> { $($field),+ });
|
|
impl_scalar_ops!($PointN<f32> { $($field),+ });
|
|
impl_scalar_ops!($PointN<f64> { $($field),+ });
|
|
|
|
impl_index_operators!($PointN<S>, $n, S, usize);
|
|
impl_index_operators!($PointN<S>, $n, [S], Range<usize>);
|
|
impl_index_operators!($PointN<S>, $n, [S], RangeTo<usize>);
|
|
impl_index_operators!($PointN<S>, $n, [S], RangeFrom<usize>);
|
|
impl_index_operators!($PointN<S>, $n, [S], RangeFull);
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_scalar_ops {
|
|
($PointN:ident<$S:ident> { $($field:ident),+ }) => {
|
|
impl_operator!(Mul<$PointN<$S>> for $S {
|
|
fn mul(scalar, point) -> $PointN<$S> { $PointN::new($(scalar * point.$field),+) }
|
|
});
|
|
impl_operator!(Div<$PointN<$S>> for $S {
|
|
fn div(scalar, point) -> $PointN<$S> { $PointN::new($(scalar / point.$field),+) }
|
|
});
|
|
impl_operator!(Rem<$PointN<$S>> for $S {
|
|
fn rem(scalar, point) -> $PointN<$S> { $PointN::new($(scalar % point.$field),+) }
|
|
});
|
|
};
|
|
}
|
|
|
|
impl_point!(Point1 { x }, Vector1, 1);
|
|
impl_point!(Point2 { x, y }, Vector2, 2);
|
|
impl_point!(Point3 { x, y, z }, Vector3, 3);
|
|
|
|
impl<S: Copy> Point1<S> {
|
|
impl_swizzle_functions!(Point1, Point2, Point3, S, x);
|
|
}
|
|
|
|
impl<S: Copy> Point2<S> {
|
|
impl_swizzle_functions!(Point1, Point2, Point3, S, xy);
|
|
}
|
|
|
|
impl<S: Copy> Point3<S> {
|
|
impl_swizzle_functions!(Point1, Point2, Point3, S, xyz);
|
|
}
|
|
|
|
impl_fixed_array_conversions!(Point1<S> { x: 0 }, 1);
|
|
impl_fixed_array_conversions!(Point2<S> { x: 0, y: 1 }, 2);
|
|
impl_fixed_array_conversions!(Point3<S> { x: 0, y: 1, z: 2 }, 3);
|
|
|
|
impl_tuple_conversions!(Point1<S> { x }, (S,));
|
|
impl_tuple_conversions!(Point2<S> { x, y }, (S, S));
|
|
impl_tuple_conversions!(Point3<S> { x, y, z }, (S, S, S));
|
|
|
|
#[cfg(feature = "mint")]
|
|
impl_mint_conversions!(Point2 { x, y }, Point2);
|
|
#[cfg(feature = "mint")]
|
|
impl_mint_conversions!(Point3 { x, y, z }, Point3);
|
|
|
|
impl<S: fmt::Debug> fmt::Debug for Point1<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "Point1 "));
|
|
<[S; 1] as fmt::Debug>::fmt(self.as_ref(), f)
|
|
}
|
|
}
|
|
|
|
impl<S: fmt::Debug> fmt::Debug for Point2<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "Point2 "));
|
|
<[S; 2] as fmt::Debug>::fmt(self.as_ref(), f)
|
|
}
|
|
}
|
|
|
|
impl<S: fmt::Debug> fmt::Debug for Point3<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "Point3 "));
|
|
<[S; 3] as fmt::Debug>::fmt(self.as_ref(), f)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
mod point2 {
|
|
use point::*;
|
|
|
|
const POINT2: Point2<i32> = Point2 { x: 1, y: 2 };
|
|
|
|
#[test]
|
|
fn test_index() {
|
|
assert_eq!(POINT2[0], POINT2.x);
|
|
assert_eq!(POINT2[1], POINT2.y);
|
|
}
|
|
|
|
#[test]
|
|
fn test_index_mut() {
|
|
let mut p = POINT2;
|
|
*&mut p[0] = 0;
|
|
assert_eq!(p, [0, 2].into());
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_index_out_of_bounds() {
|
|
POINT2[2];
|
|
}
|
|
|
|
#[test]
|
|
fn test_index_range() {
|
|
assert_eq!(&POINT2[..0], &[]);
|
|
assert_eq!(&POINT2[..1], &[1]);
|
|
assert_eq!(POINT2[..0].len(), 0);
|
|
assert_eq!(POINT2[..1].len(), 1);
|
|
assert_eq!(&POINT2[2..], &[]);
|
|
assert_eq!(&POINT2[1..], &[2]);
|
|
assert_eq!(POINT2[2..].len(), 0);
|
|
assert_eq!(POINT2[1..].len(), 1);
|
|
assert_eq!(&POINT2[..], &[1, 2]);
|
|
assert_eq!(POINT2[..].len(), 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_into() {
|
|
let p = POINT2;
|
|
{
|
|
let p: [i32; 2] = p.into();
|
|
assert_eq!(p, [1, 2]);
|
|
}
|
|
{
|
|
let p: (i32, i32) = p.into();
|
|
assert_eq!(p, (1, 2));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_as_ref() {
|
|
let p = POINT2;
|
|
{
|
|
let p: &[i32; 2] = p.as_ref();
|
|
assert_eq!(p, &[1, 2]);
|
|
}
|
|
{
|
|
let p: &(i32, i32) = p.as_ref();
|
|
assert_eq!(p, &(1, 2));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_as_mut() {
|
|
let mut p = POINT2;
|
|
{
|
|
let p: &mut [i32; 2] = p.as_mut();
|
|
assert_eq!(p, &mut [1, 2]);
|
|
}
|
|
{
|
|
let p: &mut (i32, i32) = p.as_mut();
|
|
assert_eq!(p, &mut (1, 2));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from() {
|
|
assert_eq!(Point2::from([1, 2]), POINT2);
|
|
{
|
|
let p = &[1, 2];
|
|
let p: &Point2<_> = From::from(p);
|
|
assert_eq!(p, &POINT2);
|
|
}
|
|
{
|
|
let p = &mut [1, 2];
|
|
let p: &mut Point2<_> = From::from(p);
|
|
assert_eq!(p, &POINT2);
|
|
}
|
|
assert_eq!(Point2::from((1, 2)), POINT2);
|
|
{
|
|
let p = &(1, 2);
|
|
let p: &Point2<_> = From::from(p);
|
|
assert_eq!(p, &POINT2);
|
|
}
|
|
{
|
|
let p = &mut (1, 2);
|
|
let p: &mut Point2<_> = From::from(p);
|
|
assert_eq!(p, &POINT2);
|
|
}
|
|
}
|
|
}
|
|
|
|
mod point3 {
|
|
use point::*;
|
|
|
|
const POINT3: Point3<i32> = Point3 { x: 1, y: 2, z: 3 };
|
|
|
|
#[test]
|
|
fn test_index() {
|
|
assert_eq!(POINT3[0], POINT3.x);
|
|
assert_eq!(POINT3[1], POINT3.y);
|
|
assert_eq!(POINT3[2], POINT3.z);
|
|
}
|
|
|
|
#[test]
|
|
fn test_index_mut() {
|
|
let mut p = POINT3;
|
|
*&mut p[1] = 0;
|
|
assert_eq!(p, [1, 0, 3].into());
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_index_out_of_bounds() {
|
|
POINT3[3];
|
|
}
|
|
|
|
#[test]
|
|
fn test_index_range() {
|
|
assert_eq!(&POINT3[..1], &[1]);
|
|
assert_eq!(&POINT3[..2], &[1, 2]);
|
|
assert_eq!(POINT3[..1].len(), 1);
|
|
assert_eq!(POINT3[..2].len(), 2);
|
|
assert_eq!(&POINT3[2..], &[3]);
|
|
assert_eq!(&POINT3[1..], &[2, 3]);
|
|
assert_eq!(POINT3[2..].len(), 1);
|
|
assert_eq!(POINT3[1..].len(), 2);
|
|
assert_eq!(&POINT3[..], &[1, 2, 3]);
|
|
assert_eq!(POINT3[..].len(), 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_into() {
|
|
let p = POINT3;
|
|
{
|
|
let p: [i32; 3] = p.into();
|
|
assert_eq!(p, [1, 2, 3]);
|
|
}
|
|
{
|
|
let p: (i32, i32, i32) = p.into();
|
|
assert_eq!(p, (1, 2, 3));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_as_ref() {
|
|
let p = POINT3;
|
|
{
|
|
let p: &[i32; 3] = p.as_ref();
|
|
assert_eq!(p, &[1, 2, 3]);
|
|
}
|
|
{
|
|
let p: &(i32, i32, i32) = p.as_ref();
|
|
assert_eq!(p, &(1, 2, 3));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_as_mut() {
|
|
let mut p = POINT3;
|
|
{
|
|
let p: &mut [i32; 3] = p.as_mut();
|
|
assert_eq!(p, &mut [1, 2, 3]);
|
|
}
|
|
{
|
|
let p: &mut (i32, i32, i32) = p.as_mut();
|
|
assert_eq!(p, &mut (1, 2, 3));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from() {
|
|
assert_eq!(Point3::from([1, 2, 3]), POINT3);
|
|
{
|
|
let p = &[1, 2, 3];
|
|
let p: &Point3<_> = From::from(p);
|
|
assert_eq!(p, &POINT3);
|
|
}
|
|
{
|
|
let p = &mut [1, 2, 3];
|
|
let p: &mut Point3<_> = From::from(p);
|
|
assert_eq!(p, &POINT3);
|
|
}
|
|
assert_eq!(Point3::from((1, 2, 3)), POINT3);
|
|
{
|
|
let p = &(1, 2, 3);
|
|
let p: &Point3<_> = From::from(p);
|
|
assert_eq!(p, &POINT3);
|
|
}
|
|
{
|
|
let p = &mut (1, 2, 3);
|
|
let p: &mut Point3<_> = From::from(p);
|
|
assert_eq!(p, &POINT3);
|
|
}
|
|
}
|
|
}
|
|
}
|