321 lines
10 KiB
Rust
321 lines
10 KiB
Rust
// Copyright 2014 The CGMath Developers. For a full listing of the authors,
|
|
// refer to the Cargo.toml file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
use std::fmt;
|
|
use std::ops::*;
|
|
|
|
use structure::*;
|
|
|
|
use angle::Rad;
|
|
use approx::ApproxEq;
|
|
use euler::Euler;
|
|
use matrix::{Matrix2, Matrix3};
|
|
use num::BaseFloat;
|
|
use point::{Point2, Point3};
|
|
use quaternion::Quaternion;
|
|
use vector::{Vector2, Vector3};
|
|
|
|
/// A trait for a generic rotation. A rotation is a transformation that
|
|
/// creates a circular motion, and preserves at least one point in the space.
|
|
pub trait Rotation<P: EuclideanSpace>: Sized + Copy + One where
|
|
// FIXME: Ugly type signatures - blocked by rust-lang/rust#24092
|
|
Self: ApproxEq<Epsilon = <P as EuclideanSpace>::Scalar>,
|
|
<P as EuclideanSpace>::Scalar: BaseFloat,
|
|
{
|
|
/// Create a rotation to a given direction with an 'up' vector
|
|
fn look_at(dir: P::Diff, up: P::Diff) -> Self;
|
|
|
|
/// Create a shortest rotation to transform vector 'a' into 'b'.
|
|
/// Both given vectors are assumed to have unit length.
|
|
fn between_vectors(a: P::Diff, b: P::Diff) -> Self;
|
|
|
|
/// Rotate a vector using this rotation.
|
|
fn rotate_vector(&self, vec: P::Diff) -> P::Diff;
|
|
|
|
/// Rotate a point using this rotation, by converting it to its
|
|
/// representation as a vector.
|
|
#[inline]
|
|
fn rotate_point(&self, point: P) -> P {
|
|
P::from_vec(self.rotate_vector(point.to_vec()))
|
|
}
|
|
|
|
/// Create a new rotation which "un-does" this rotation. That is,
|
|
/// `r * r.invert()` is the identity.
|
|
fn invert(&self) -> Self;
|
|
}
|
|
|
|
/// A two-dimensional rotation.
|
|
pub trait Rotation2<S: BaseFloat>: Rotation<Point2<S>>
|
|
+ Into<Matrix2<S>>
|
|
+ Into<Basis2<S>> {
|
|
/// Create a rotation by a given angle. Thus is a redundant case of both
|
|
/// from_axis_angle() and from_euler() for 2D space.
|
|
fn from_angle<A: Into<Rad<S>>>(theta: A) -> Self;
|
|
}
|
|
|
|
/// A three-dimensional rotation.
|
|
pub trait Rotation3<S: BaseFloat>: Rotation<Point3<S>>
|
|
+ Into<Matrix3<S>>
|
|
+ Into<Basis3<S>>
|
|
+ Into<Quaternion<S>>
|
|
+ From<Euler<Rad<S>>> {
|
|
/// Create a rotation using an angle around a given axis.
|
|
///
|
|
/// The specified axis **must be normalized**, or it represents an invalid rotation.
|
|
fn from_axis_angle<A: Into<Rad<S>>>(axis: Vector3<S>, angle: A) -> Self;
|
|
|
|
/// Create a rotation from an angle around the `x` axis (pitch).
|
|
#[inline]
|
|
fn from_angle_x<A: Into<Rad<S>>>(theta: A) -> Self {
|
|
Rotation3::from_axis_angle(Vector3::unit_x(), theta)
|
|
}
|
|
|
|
/// Create a rotation from an angle around the `y` axis (yaw).
|
|
#[inline]
|
|
fn from_angle_y<A: Into<Rad<S>>>(theta: A) -> Self {
|
|
Rotation3::from_axis_angle(Vector3::unit_y(), theta)
|
|
}
|
|
|
|
/// Create a rotation from an angle around the `z` axis (roll).
|
|
#[inline]
|
|
fn from_angle_z<A: Into<Rad<S>>>(theta: A) -> Self {
|
|
Rotation3::from_axis_angle(Vector3::unit_z(), theta)
|
|
}
|
|
}
|
|
|
|
|
|
/// A two-dimensional rotation matrix.
|
|
///
|
|
/// The matrix is guaranteed to be orthogonal, so some operations can be
|
|
/// implemented more efficiently than the implementations for `math::Matrix2`. To
|
|
/// enforce orthogonality at the type level the operations have been restricted
|
|
/// to a subset of those implemented on `Matrix2`.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// Suppose we want to rotate a vector that lies in the x-y plane by some
|
|
/// angle. We can accomplish this quite easily with a two-dimensional rotation
|
|
/// matrix:
|
|
///
|
|
/// ```no_run
|
|
/// use cgmath::Rad;
|
|
/// use cgmath::Vector2;
|
|
/// use cgmath::{Matrix, Matrix2};
|
|
/// use cgmath::{Rotation, Rotation2, Basis2};
|
|
/// use cgmath::ApproxEq;
|
|
/// use std::f64;
|
|
///
|
|
/// // For simplicity, we will rotate the unit x vector to the unit y vector --
|
|
/// // so the angle is 90 degrees, or π/2.
|
|
/// let unit_x: Vector2<f64> = Vector2::unit_x();
|
|
/// let rot: Basis2<f64> = Rotation2::from_angle(Rad(0.5f64 * f64::consts::PI));
|
|
///
|
|
/// // Rotate the vector using the two-dimensional rotation matrix:
|
|
/// let unit_y = rot.rotate_vector(unit_x);
|
|
///
|
|
/// // Since sin(π/2) may not be exactly zero due to rounding errors, we can
|
|
/// // use cgmath's approx_eq() feature to show that it is close enough.
|
|
/// assert!(unit_y.approx_eq(&Vector2::unit_y()));
|
|
///
|
|
/// // This is exactly equivalent to using the raw matrix itself:
|
|
/// let unit_y2: Matrix2<_> = rot.into();
|
|
/// let unit_y2 = unit_y2 * unit_x;
|
|
/// assert_eq!(unit_y2, unit_y);
|
|
///
|
|
/// // Note that we can also concatenate rotations:
|
|
/// let rot_half: Basis2<f64> = Rotation2::from_angle(Rad(0.25f64 * f64::consts::PI));
|
|
/// let unit_y3 = (rot_half * rot_half).rotate_vector(unit_x);
|
|
/// assert!(unit_y3.approx_eq(&unit_y2));
|
|
/// ```
|
|
#[derive(PartialEq, Copy, Clone)]
|
|
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
|
|
#[cfg_attr(feature = "eders", derive(Serialize, Deserialize))]
|
|
pub struct Basis2<S> {
|
|
mat: Matrix2<S>
|
|
}
|
|
|
|
impl<S: BaseFloat> AsRef<Matrix2<S>> for Basis2<S> {
|
|
#[inline]
|
|
fn as_ref(&self) -> &Matrix2<S> {
|
|
&self.mat
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> From<Basis2<S>> for Matrix2<S> {
|
|
#[inline]
|
|
fn from(b: Basis2<S>) -> Matrix2<S> { b.mat }
|
|
}
|
|
|
|
impl<S: BaseFloat> Rotation<Point2<S>> for Basis2<S> {
|
|
#[inline]
|
|
fn look_at(dir: Vector2<S>, up: Vector2<S>) -> Basis2<S> {
|
|
Basis2 { mat: Matrix2::look_at(dir, up) }
|
|
}
|
|
|
|
#[inline]
|
|
fn between_vectors(a: Vector2<S>, b: Vector2<S>) -> Basis2<S> {
|
|
Rotation2::from_angle(Rad::acos(a.dot(b)) )
|
|
}
|
|
|
|
#[inline]
|
|
fn rotate_vector(&self, vec: Vector2<S>) -> Vector2<S> { self.mat * vec }
|
|
|
|
// TODO: we know the matrix is orthogonal, so this could be re-written
|
|
// to be faster
|
|
#[inline]
|
|
fn invert(&self) -> Basis2<S> { Basis2 { mat: self.mat.invert().unwrap() } }
|
|
}
|
|
|
|
impl<S: BaseFloat> One for Basis2<S> {
|
|
#[inline]
|
|
fn one() -> Basis2<S> { Basis2 { mat: Matrix2::one() } }
|
|
}
|
|
|
|
impl_operator!(<S: BaseFloat> Mul<Basis2<S> > for Basis2<S> {
|
|
fn mul(lhs, rhs) -> Basis2<S> { Basis2 { mat: lhs.mat * rhs.mat } }
|
|
});
|
|
|
|
impl<S: BaseFloat> ApproxEq for Basis2<S> {
|
|
type Epsilon = S;
|
|
|
|
#[inline]
|
|
fn approx_eq_eps(&self, other: &Basis2<S>, epsilon: &S) -> bool {
|
|
self.mat.approx_eq_eps(&other.mat, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Rotation2<S> for Basis2<S> {
|
|
fn from_angle<A: Into<Rad<S>>>(theta: A) -> Basis2<S> { Basis2 { mat: Matrix2::from_angle(theta) } }
|
|
}
|
|
|
|
impl<S: fmt::Debug> fmt::Debug for Basis2<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "Basis2 "));
|
|
<[[S; 2]; 2] as fmt::Debug>::fmt(self.mat.as_ref(), f)
|
|
}
|
|
}
|
|
|
|
/// A three-dimensional rotation matrix.
|
|
///
|
|
/// The matrix is guaranteed to be orthogonal, so some operations, specifically
|
|
/// inversion, can be implemented more efficiently than the implementations for
|
|
/// `math::Matrix3`. To ensure orthogonality is maintained, the operations have
|
|
/// been restricted to a subeset of those implemented on `Matrix3`.
|
|
#[derive(PartialEq, Copy, Clone)]
|
|
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
|
|
#[cfg_attr(feature = "eders", derive(Serialize, Deserialize))]
|
|
pub struct Basis3<S> {
|
|
mat: Matrix3<S>
|
|
}
|
|
|
|
impl<S: BaseFloat> Basis3<S> {
|
|
/// Create a new rotation matrix from a quaternion.
|
|
#[inline]
|
|
pub fn from_quaternion(quaternion: &Quaternion<S>) -> Basis3<S> {
|
|
Basis3 { mat: quaternion.clone().into() }
|
|
}
|
|
}
|
|
|
|
impl<S> AsRef<Matrix3<S>> for Basis3<S> {
|
|
#[inline]
|
|
fn as_ref(&self) -> &Matrix3<S> {
|
|
&self.mat
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> From<Basis3<S>> for Matrix3<S> {
|
|
#[inline]
|
|
fn from(b: Basis3<S>) -> Matrix3<S> { b.mat }
|
|
}
|
|
|
|
impl<S: BaseFloat> From<Basis3<S>> for Quaternion<S> {
|
|
#[inline]
|
|
fn from(b: Basis3<S>) -> Quaternion<S> { b.mat.into() }
|
|
}
|
|
|
|
impl<S: BaseFloat> Rotation<Point3<S>> for Basis3<S> {
|
|
#[inline]
|
|
fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Basis3<S> {
|
|
Basis3 { mat: Matrix3::look_at(dir, up) }
|
|
}
|
|
|
|
#[inline]
|
|
fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Basis3<S> {
|
|
let q: Quaternion<S> = Rotation::between_vectors(a, b);
|
|
q.into()
|
|
}
|
|
|
|
#[inline]
|
|
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> { self.mat * vec }
|
|
|
|
// TODO: we know the matrix is orthogonal, so this could be re-written
|
|
// to be faster
|
|
#[inline]
|
|
fn invert(&self) -> Basis3<S> { Basis3 { mat: self.mat.invert().unwrap() } }
|
|
}
|
|
|
|
impl<S: BaseFloat> One for Basis3<S> {
|
|
#[inline]
|
|
fn one() -> Basis3<S> { Basis3 { mat: Matrix3::one() } }
|
|
}
|
|
|
|
impl_operator!(<S: BaseFloat> Mul<Basis3<S> > for Basis3<S> {
|
|
fn mul(lhs, rhs) -> Basis3<S> { Basis3 { mat: lhs.mat * rhs.mat } }
|
|
});
|
|
|
|
impl<S: BaseFloat> ApproxEq for Basis3<S> {
|
|
type Epsilon = S;
|
|
|
|
#[inline]
|
|
fn approx_eq_eps(&self, other: &Basis3<S>, epsilon: &S) -> bool {
|
|
self.mat.approx_eq_eps(&other.mat, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Rotation3<S> for Basis3<S> {
|
|
fn from_axis_angle<A: Into<Rad<S>>>(axis: Vector3<S>, angle: A) -> Basis3<S> {
|
|
Basis3 { mat: Matrix3::from_axis_angle(axis, angle) }
|
|
}
|
|
|
|
fn from_angle_x<A: Into<Rad<S>>>(theta: A) -> Basis3<S> {
|
|
Basis3 { mat: Matrix3::from_angle_x(theta) }
|
|
}
|
|
|
|
fn from_angle_y<A: Into<Rad<S>>>(theta: A) -> Basis3<S> {
|
|
Basis3 { mat: Matrix3::from_angle_y(theta) }
|
|
}
|
|
|
|
fn from_angle_z<A: Into<Rad<S>>>(theta: A) -> Basis3<S> {
|
|
Basis3 { mat: Matrix3::from_angle_z(theta) }
|
|
}
|
|
}
|
|
|
|
impl<A: Angle> From<Euler<A>> for Basis3<<A as Angle>::Unitless> where
|
|
A: Into<Rad<<A as Angle>::Unitless>>,
|
|
{
|
|
/// Create a three-dimensional rotation matrix from a set of euler angles.
|
|
fn from(src: Euler<A>) -> Basis3<A::Unitless> {
|
|
Basis3 {
|
|
mat: Matrix3::from(src),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: fmt::Debug> fmt::Debug for Basis3<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "Basis3 "));
|
|
<[[S; 3]; 3] as fmt::Debug>::fmt(self.mat.as_ref(), f)
|
|
}
|
|
}
|