3673c4db6d
Moved the old source code temporarily to src-old. This will be removed once the functionality has been transferred over into the new system. The new design is based on algebraic principles. Thanks goes to sebcrozet and his nalgebra library for providing the inspiration for the algebraic traits: https://github.com/sebcrozet/nalgebra
645 lines
19 KiB
Rust
645 lines
19 KiB
Rust
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
|
||
// refer to the AUTHORS file at the top-level directory of this distribution.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
//! Various three-dimensional rotation types and impls.
|
||
//!
|
||
//! Some of these are more useful for constructing matricies and quaternions.
|
||
//! than for general use. For example due to issues with gimble lock, it is
|
||
//! not reccomended that Euler rotations be used for translations, but
|
||
//! they _are_ useful for intuitively specifying rotations.
|
||
//!
|
||
//! # Examples
|
||
//!
|
||
//! ~~~rust
|
||
//! Euler::new::<f32>(1.0, 2.0, 0.0).to_mat3()
|
||
//! ~~~
|
||
//!
|
||
//! ~~~rust
|
||
//! AxisY::<f32>(0.3).to_quat()
|
||
//! ~~~
|
||
|
||
use std::cast;
|
||
|
||
use math::*;
|
||
|
||
use math::{Point3, Ray3};
|
||
|
||
/// A two-dimensional rotation
|
||
pub trait Rotation2<T>: Eq
|
||
+ ApproxEq<T>
|
||
+ ToMat2<T> {
|
||
pub fn rotate_point2(&self, point: Point2<T>) -> Point2<T>;
|
||
pub fn rotate_vec2(&self, vec: &Vec2<T>) -> Vec2<T>;
|
||
pub fn rotate_ray2(&self, ray: &Ray2<T>) -> Ray2<T>;
|
||
pub fn to_rotation_mat2(&self) -> RotationMat2<T>;
|
||
}
|
||
|
||
/// A three-dimensional rotation
|
||
pub trait Rotation3<T>: Eq
|
||
+ ApproxEq<T>
|
||
+ ToMat3<T>
|
||
+ ToMat4<T>
|
||
+ ToQuat<T> {
|
||
pub fn rotate_point3(&self, point: &Point3<T>) -> Point3<T>;
|
||
pub fn rotate_vec3(&self, vec: &Vec3<T>) -> Vec3<T>;
|
||
pub fn rotate_ray3(&self, ray: &Ray3<T>) -> Ray3<T>;
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T>;
|
||
}
|
||
|
||
/// A two-dimensional rotation matrix.
|
||
///
|
||
/// The matrix is guaranteed to be orthogonal, so some operations can be
|
||
/// implemented more efficiently than the implementations for `math::Mat2`. To
|
||
/// enforce orthogonality at the type level the operations have been restricted
|
||
/// to a subeset of those implemented on `Mat3`.
|
||
#[deriving(Eq, Clone)]
|
||
pub struct RotationMat2<T> {
|
||
priv mat: Mat2<T>
|
||
}
|
||
|
||
impl_approx!(RotationMat2 { mat })
|
||
|
||
impl<T> RotationMat2<T> {
|
||
#[inline]
|
||
pub fn as_mat2<'a>(&'a self) -> & 'a Mat2<T> {
|
||
unsafe { cast::transmute(self) }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> Rotation2<T> for RotationMat2<T> {
|
||
pub fn rotate_point2(&self, point: Point2<T>) -> Point2<T> {
|
||
point.with_vec2(|vec| self.rotate_vec2(vec))
|
||
}
|
||
|
||
pub fn rotate_vec2(&self, vec: &Vec2<T>) -> Vec2<T> {
|
||
self.mat.mul_v(vec)
|
||
}
|
||
|
||
pub fn rotate_ray2(&self, _ray: &Ray2<T>) -> Ray2<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat2(&self) -> RotationMat2<T> {
|
||
RotationMat2 { mat: self.to_mat2() }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat2<T> for RotationMat2<T> {
|
||
#[inline] pub fn to_mat2(&self) -> Mat2<T> { self.mat.clone() }
|
||
}
|
||
|
||
impl<T:Num> RotationMat2<T> {
|
||
#[inline]
|
||
pub fn identity() -> RotationMat2<T> {
|
||
RotationMat2 { mat: Mat2::identity() }
|
||
}
|
||
|
||
#[inline]
|
||
pub fn zero() -> RotationMat2<T> {
|
||
RotationMat2 { mat: Mat2::zero() }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Num> Neg<RotationMat2<T>> for RotationMat2<T> {
|
||
#[inline]
|
||
pub fn neg(&self) -> RotationMat2<T> {
|
||
RotationMat2 { mat: -self.mat }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> Rotation3<T> for Quat<T> {
|
||
pub fn rotate_point3(&self, point: &Point3<T>) -> Point3<T> {
|
||
point.with_vec3(|vec| self.rotate_vec3(vec))
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, vec: &Vec3<T>) -> Vec3<T> {
|
||
self.mul_v(vec)
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
/// A three-dimensional rotation matrix.
|
||
///
|
||
/// The matrix is guaranteed to be orthogonal, so some operations, specifically
|
||
/// inversion, can be implemented more efficiently than the implementations for
|
||
/// `math::Mat3`. To enforce orthogonality at the type level the operations have
|
||
/// been restricted to a subeset of those implemented on `Mat3`.
|
||
#[deriving(Eq, Clone)]
|
||
pub struct RotationMat3<T> {
|
||
priv mat: Mat3<T>
|
||
}
|
||
|
||
impl_approx!(RotationMat3 { mat })
|
||
|
||
impl<T> RotationMat3<T> {
|
||
#[inline]
|
||
pub fn as_mat3<'a>(&'a self) -> & 'a Mat3<T> {
|
||
unsafe { cast::transmute(self) }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> Rotation3<T> for RotationMat3<T> {
|
||
pub fn rotate_point3(&self, point: &Point3<T>) -> Point3<T> {
|
||
point.with_vec3(|vec| self.rotate_vec3(vec))
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, vec: &Vec3<T>) -> Vec3<T> {
|
||
self.mat.mul_v(vec)
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToQuat<T> for RotationMat3<T> {
|
||
#[inline] pub fn to_quat(&self) -> Quat<T> { self.mat.to_quat() }
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat3<T> for RotationMat3<T> {
|
||
#[inline] pub fn to_mat3(&self) -> Mat3<T> { self.mat.clone() }
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat4<T> for RotationMat3<T> {
|
||
#[inline] pub fn to_mat4(&self) -> Mat4<T> { self.mat.to_mat4() }
|
||
}
|
||
|
||
impl<T:Num> RotationMat3<T> {
|
||
#[inline]
|
||
pub fn identity() -> RotationMat3<T> {
|
||
RotationMat3 { mat: Mat3::identity() }
|
||
}
|
||
|
||
#[inline]
|
||
pub fn zero() -> RotationMat3<T> {
|
||
RotationMat3 { mat: Mat3::zero() }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Num> Neg<RotationMat3<T>> for RotationMat3<T> {
|
||
#[inline]
|
||
pub fn neg(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: -self.mat }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> RotationMat3<T> {
|
||
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> RotationMat3<T> {
|
||
RotationMat3 { mat: Mat3::look_at(dir, up) }
|
||
}
|
||
}
|
||
|
||
/// Euler angles
|
||
///
|
||
/// # Fields
|
||
///
|
||
/// - `pitch`: the angular rotation around the `x` axis in radians
|
||
/// - `yaw`: the angular rotation around the `y` axis in radians
|
||
/// - `roll`: the angular rotation around the `z` axis in radians
|
||
#[deriving(Eq, Clone)]
|
||
pub struct Euler<T> { pitch: T, yaw: T, roll: T }
|
||
|
||
impl_dimensioned!(Euler, T, 3)
|
||
impl_to_vec!(Euler, 3)
|
||
impl_as_vec!(Euler, 3)
|
||
impl_swap_components!(Euler)
|
||
impl_approx!(Euler { pitch, yaw, roll })
|
||
|
||
pub trait ToEuler<T> {
|
||
pub fn to_euler(&self) -> Euler<T>;
|
||
}
|
||
|
||
impl<T:Float> Euler<T> {
|
||
#[inline]
|
||
pub fn new(pitch: T, yaw: T, roll: T) -> Euler<T> {
|
||
Euler { pitch: pitch, yaw: yaw, roll: roll }
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> Rotation3<T> for Euler<T> {
|
||
pub fn rotate_point3(&self, _point: &Point3<T>) -> Point3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, _vec: &Vec3<T>) -> Vec3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToQuat<T> for Euler<T> {
|
||
pub fn to_quat(&self) -> Quat<T> {
|
||
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Conversion
|
||
let xdiv2 = self.pitch / two!(T);
|
||
let ydiv2 = self.yaw / two!(T);
|
||
let zdiv2 = self.roll / two!(T);
|
||
Quat::new(zdiv2.cos() * xdiv2.cos() * ydiv2.cos() + zdiv2.sin() * xdiv2.sin() * ydiv2.sin(),
|
||
zdiv2.sin() * xdiv2.cos() * ydiv2.cos() - zdiv2.cos() * xdiv2.sin() * ydiv2.sin(),
|
||
zdiv2.cos() * xdiv2.sin() * ydiv2.cos() + zdiv2.sin() * xdiv2.cos() * ydiv2.sin(),
|
||
zdiv2.cos() * xdiv2.cos() * ydiv2.sin() - zdiv2.sin() * xdiv2.sin() * ydiv2.cos())
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToMat3<T> for Euler<T> {
|
||
pub fn to_mat3(&self) -> Mat3<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
||
let cx = self.pitch.cos();
|
||
let sx = self.pitch.sin();
|
||
let cy = self.yaw.cos();
|
||
let sy = self.yaw.sin();
|
||
let cz = self.roll.cos();
|
||
let sz = self.roll.sin();
|
||
|
||
Mat3::new(cy * cz, cy * sz, -sy,
|
||
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
|
||
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToMat4<T> for Euler<T> {
|
||
pub fn to_mat4(&self) -> Mat4<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
||
let cx = self.pitch.cos();
|
||
let sx = self.pitch.sin();
|
||
let cy = self.yaw.cos();
|
||
let sy = self.yaw.sin();
|
||
let cz = self.roll.cos();
|
||
let sz = self.roll.sin();
|
||
|
||
Mat4::new(cy * cz, cy * sz, -sy, zero!(T),
|
||
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, zero!(T),
|
||
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy, zero!(T),
|
||
zero!(T), zero!(T), zero!(T), one!(T))
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod euler_tests {
|
||
// TODO
|
||
}
|
||
|
||
/// A rotation about an arbitrary axis
|
||
///
|
||
/// # Fields
|
||
///
|
||
/// - `axis`: The axis vector about which to rotate.
|
||
/// - `angle`: The angle of rotation in radians.
|
||
#[deriving(Eq, Clone)]
|
||
pub struct AxisAngle<T> {
|
||
axis: Vec3<T>,
|
||
angle: T,
|
||
}
|
||
|
||
impl_approx!(AxisAngle { axis, angle })
|
||
|
||
pub trait ToAxisAngle<T> {
|
||
pub fn to_axis_angle(&self) -> AxisAngle<T>;
|
||
}
|
||
|
||
impl<T:Float> AxisAngle<T> {
|
||
pub fn new(axis: Vec3<T>, angle: T) -> AxisAngle<T> {
|
||
AxisAngle { axis: axis, angle: angle }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> Rotation3<T> for AxisAngle<T> {
|
||
pub fn rotate_point3(&self, point: &Point3<T>) -> Point3<T> {
|
||
point.with_vec3(|vec| self.rotate_vec3(vec))
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, vec: &Vec3<T>) -> Vec3<T> {
|
||
// Rodrigues' rotation formula
|
||
// http://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
|
||
//
|
||
// ~~~
|
||
// v cos θ + (k × v) sin θ + k(k ⋅ v)(1 - cos θ)
|
||
// ~~~
|
||
//
|
||
// Where:
|
||
// - `v` = vec
|
||
// - `k` = self.axis
|
||
// - `θ` = self.angle
|
||
|
||
vec.mul_s(self.angle.cos())
|
||
.add_v(&self.axis.cross(vec)).mul_s(self.angle.sin())
|
||
.add_v(&self.axis.mul_s(self.axis.dot(vec))
|
||
.mul_s(one!(T) - self.angle.cos()))
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToQuat<T> for AxisAngle<T> {
|
||
pub fn to_quat(&self) -> Quat<T> {
|
||
let half = self.angle / two!(T);
|
||
Quat::from_sv(half.cos(), self.axis.mul_s(half.sin()))
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToMat3<T> for AxisAngle<T> {
|
||
pub fn to_mat3(&self) -> Mat3<T> {
|
||
let c = self.angle.cos();
|
||
let s = self.angle.sin();
|
||
let _1_c = one!(T) - c;
|
||
|
||
Mat3::new(_1_c * self.axis.x * self.axis.x + c,
|
||
_1_c * self.axis.x * self.axis.y + s * self.axis.z,
|
||
_1_c * self.axis.x * self.axis.z - s * self.axis.y,
|
||
|
||
_1_c * self.axis.x * self.axis.y - s * self.axis.z,
|
||
_1_c * self.axis.y * self.axis.y + c,
|
||
_1_c * self.axis.y * self.axis.z + s * self.axis.x,
|
||
|
||
_1_c * self.axis.x * self.axis.z + s * self.axis.y,
|
||
_1_c * self.axis.y * self.axis.z - s * self.axis.x,
|
||
_1_c * self.axis.z * self.axis.z + c)
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToMat4<T> for AxisAngle<T> {
|
||
pub fn to_mat4(&self) -> Mat4<T> {
|
||
let c = self.angle.cos();
|
||
let s = self.angle.sin();
|
||
let _1_c = one!(T) - c;
|
||
|
||
Mat4::new(_1_c * self.axis.x * self.axis.x + c,
|
||
_1_c * self.axis.x * self.axis.y + s * self.axis.z,
|
||
_1_c * self.axis.x * self.axis.z - s * self.axis.y,
|
||
zero!(T),
|
||
|
||
_1_c * self.axis.x * self.axis.y - s * self.axis.z,
|
||
_1_c * self.axis.y * self.axis.y + c,
|
||
_1_c * self.axis.y * self.axis.z + s * self.axis.x,
|
||
zero!(T),
|
||
|
||
_1_c * self.axis.x * self.axis.z + s * self.axis.y,
|
||
_1_c * self.axis.y * self.axis.z - s * self.axis.x,
|
||
_1_c * self.axis.z * self.axis.z + c,
|
||
zero!(T),
|
||
|
||
zero!(T), zero!(T), zero!(T), one!(T))
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod axis_angle_tests {
|
||
use math::*;
|
||
use transform::*;
|
||
|
||
#[test]
|
||
fn test_to_quat() {
|
||
let v = Vec3::new(1f, 0f, 0f);
|
||
|
||
let q = AxisAngle::new(Vec3::new(0f, 0f, -1f), (-45f).to_radians()).to_quat();
|
||
|
||
// http://www.wolframalpha.com/input/?i={1,0}+rotate+-45+degrees
|
||
assert_approx_eq!(q.mul_v(&v), Vec3::new(1f/2f.sqrt(), 1f/2f.sqrt(), 0f));
|
||
assert_eq!(q.mul_v(&v).magnitude(), v.magnitude());
|
||
assert_approx_eq!(q.to_mat3(), Mat3::new( 1f/2f.sqrt(), 1f/2f.sqrt(), 0f,
|
||
-1f/2f.sqrt(), 1f/2f.sqrt(), 0f,
|
||
0f, 0f, 1f));
|
||
}
|
||
}
|
||
|
||
/// An angle around the X axis (pitch), in radians.
|
||
#[deriving(Eq, Clone)]
|
||
pub struct AngleX<T>(T);
|
||
|
||
impl_approx!(AngleX)
|
||
|
||
impl<T:Clone + Float> Rotation3<T> for AngleX<T> {
|
||
pub fn rotate_point3(&self, _point: &Point3<T>) -> Point3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, _vec: &Vec3<T>) -> Vec3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToQuat<T> for AngleX<T> {
|
||
pub fn to_quat(&self) -> Quat<T> {
|
||
Quat::new(((**self) / two!(T)).cos(), (**self).sin(), zero!(T), zero!(T))
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat3<T> for AngleX<T> {
|
||
pub fn to_mat3(&self) -> Mat3<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
|
||
let cos_theta = (**self).cos();
|
||
let sin_theta = (**self).sin();
|
||
|
||
Mat3::new(one!(T), zero!(T), zero!(T),
|
||
zero!(T), cos_theta.clone(), sin_theta.clone(),
|
||
zero!(T), -sin_theta.clone(), cos_theta.clone())
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat4<T> for AngleX<T> {
|
||
pub fn to_mat4(&self) -> Mat4<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
|
||
let cos_theta = (**self).cos();
|
||
let sin_theta = (**self).sin();
|
||
|
||
Mat4::new(one!(T), zero!(T), zero!(T), zero!(T),
|
||
zero!(T), cos_theta.clone(), sin_theta.clone(), zero!(T),
|
||
zero!(T), -sin_theta.clone(), cos_theta.clone(), zero!(T),
|
||
zero!(T), zero!(T), zero!(T), one!(T))
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod angle_x_tests {
|
||
// TODO
|
||
}
|
||
|
||
/// An angle around the X axis (yaw), in radians.
|
||
#[deriving(Eq, Clone)]
|
||
pub struct AngleY<T>(T);
|
||
|
||
impl_approx!(AngleY)
|
||
|
||
impl<T:Clone + Float> Rotation3<T> for AngleY<T> {
|
||
pub fn rotate_point3(&self, _point: &Point3<T>) -> Point3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, _vec: &Vec3<T>) -> Vec3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToQuat<T> for AngleY<T> {
|
||
pub fn to_quat(&self) -> Quat<T> {
|
||
Quat::new(((**self) / two!(T)).cos(), zero!(T), (**self).sin(), zero!(T))
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat3<T> for AngleY<T> {
|
||
pub fn to_mat3(&self) -> Mat3<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
|
||
let cos_theta = (**self).cos();
|
||
let sin_theta = (**self).sin();
|
||
|
||
Mat3::new(cos_theta.clone(), zero!(T), -sin_theta.clone(),
|
||
zero!(T), one!(T), zero!(T),
|
||
sin_theta.clone(), zero!(T), cos_theta.clone())
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat4<T> for AngleY<T> {
|
||
pub fn to_mat4(&self) -> Mat4<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
|
||
let cos_theta = (**self).cos();
|
||
let sin_theta = (**self).sin();
|
||
|
||
Mat4::new(cos_theta.clone(), zero!(T), -sin_theta.clone(), zero!(T),
|
||
zero!(T), one!(T), zero!(T), zero!(T),
|
||
sin_theta.clone(), zero!(T), cos_theta.clone(), zero!(T),
|
||
zero!(T), zero!(T), zero!(T), one!(T))
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod angle_y_tests {
|
||
// TODO
|
||
}
|
||
|
||
/// An angle around the Z axis (roll), in radians.
|
||
#[deriving(Eq, Clone)]
|
||
pub struct AngleZ<T>(T);
|
||
|
||
impl_approx!(AngleZ)
|
||
|
||
impl<T:Float> Rotation2<T> for AngleZ<T> {
|
||
pub fn rotate_point2(&self, _point: Point2<T>) -> Point2<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_vec2(&self, _vec: &Vec2<T>) -> Vec2<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_ray2(&self, _ray: &Ray2<T>) -> Ray2<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat2(&self) -> RotationMat2<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> Rotation3<T> for AngleZ<T> {
|
||
pub fn rotate_point3(&self, _point: &Point3<T>) -> Point3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_vec3(&self, _vec: &Vec3<T>) -> Vec3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
pub fn rotate_ray3(&self, _ray: &Ray3<T>) -> Ray3<T> {
|
||
fail!("Not yet implemented.")
|
||
}
|
||
|
||
#[inline]
|
||
pub fn to_rotation_mat3(&self) -> RotationMat3<T> {
|
||
RotationMat3 { mat: self.to_mat3() }
|
||
}
|
||
}
|
||
|
||
impl<T:Float> ToQuat<T> for AngleZ<T> {
|
||
pub fn to_quat(&self) -> Quat<T> {
|
||
Quat::new(((**self) / two!(T)).cos(), zero!(T), zero!(T), (**self).sin())
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat3<T> for AngleZ<T> {
|
||
pub fn to_mat3(&self) -> Mat3<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
|
||
let cos_theta = (**self).cos();
|
||
let sin_theta = (**self).sin();
|
||
|
||
Mat3::new(cos_theta.clone(), sin_theta.clone(), zero!(T),
|
||
-sin_theta.clone(), cos_theta.clone(), zero!(T),
|
||
zero!(T), zero!(T), one!(T))
|
||
}
|
||
}
|
||
|
||
impl<T:Clone + Float> ToMat4<T> for AngleZ<T> {
|
||
pub fn to_mat4(&self) -> Mat4<T> {
|
||
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
|
||
let cos_theta = (**self).cos();
|
||
let sin_theta = (**self).sin();
|
||
|
||
Mat4::new(cos_theta.clone(), sin_theta.clone(), zero!(T), zero!(T),
|
||
-sin_theta.clone(), cos_theta.clone(), zero!(T), zero!(T),
|
||
zero!(T), zero!(T), one!(T), zero!(T),
|
||
zero!(T), zero!(T), zero!(T), one!(T))
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod angle_z_tests {
|
||
// TODO
|
||
}
|