242 lines
7.8 KiB
Rust
242 lines
7.8 KiB
Rust
// Copyright 2013 The CGMath Developers. For a full listing of the authors,
|
|
// refer to the AUTHORS file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
use std::num::{zero, one, sqrt};
|
|
|
|
use angle::{Angle, Rad, acos, cos, sin};
|
|
use matrix::{Mat3, ToMat3};
|
|
use vector::{Vec3, Vector, EuclideanVector};
|
|
use util::two;
|
|
|
|
/// A quaternion in scalar/vector form
|
|
#[deriving(Clone, Eq)]
|
|
pub struct Quat<S> { s: S, v: Vec3<S> }
|
|
|
|
pub trait ToQuat<S: Clone + Float> {
|
|
fn to_quat(&self) -> Quat<S>;
|
|
}
|
|
|
|
impl<S: Clone + Float> Quat<S> {
|
|
/// Construct a new quaternion from one scalar component and three
|
|
/// imaginary components
|
|
#[inline]
|
|
pub fn new(w: S, xi: S, yj: S, zk: S) -> Quat<S> {
|
|
Quat::from_sv(w, Vec3::new(xi, yj, zk))
|
|
}
|
|
|
|
/// Construct a new quaternion from a scalar and a vector
|
|
#[inline]
|
|
pub fn from_sv(s: S, v: Vec3<S>) -> Quat<S> {
|
|
Quat { s: s, v: v }
|
|
}
|
|
|
|
#[inline]
|
|
pub fn look_at(dir: &Vec3<S>, up: &Vec3<S>) -> Quat<S> {
|
|
Mat3::look_at(dir, up).to_quat()
|
|
}
|
|
|
|
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
|
|
#[inline]
|
|
pub fn zero() -> Quat<S> {
|
|
Quat::new(zero(), zero(), zero(), zero())
|
|
}
|
|
|
|
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
|
|
#[inline]
|
|
pub fn identity() -> Quat<S> {
|
|
Quat::from_sv(one::<S>(), Vec3::zero())
|
|
}
|
|
|
|
/// The result of multiplying the quaternion a scalar
|
|
#[inline]
|
|
pub fn mul_s(&self, value: S) -> Quat<S> {
|
|
Quat::from_sv(self.s * value, self.v.mul_s(value))
|
|
}
|
|
|
|
/// The result of dividing the quaternion a scalar
|
|
#[inline]
|
|
pub fn div_s(&self, value: S) -> Quat<S> {
|
|
Quat::from_sv(self.s / value, self.v.div_s(value))
|
|
}
|
|
|
|
/// The result of multiplying the quaternion by a vector
|
|
#[inline]
|
|
pub fn mul_v(&self, vec: &Vec3<S>) -> Vec3<S> {
|
|
let tmp = self.v.cross(vec).add_v(&vec.mul_s(self.s.clone()));
|
|
self.v.cross(&tmp).mul_s(two::<S>()).add_v(vec)
|
|
}
|
|
|
|
/// The sum of this quaternion and `other`
|
|
#[inline]
|
|
pub fn add_q(&self, other: &Quat<S>) -> Quat<S> {
|
|
Quat::new(self.s + other.s,
|
|
self.v.x + other.v.x,
|
|
self.v.y + other.v.y,
|
|
self.v.z + other.v.z)
|
|
}
|
|
|
|
/// The sum of this quaternion and `other`
|
|
#[inline]
|
|
pub fn sub_q(&self, other: &Quat<S>) -> Quat<S> {
|
|
Quat::new(self.s - other.s,
|
|
self.v.x - other.v.x,
|
|
self.v.y - other.v.y,
|
|
self.v.z - other.v.z)
|
|
}
|
|
|
|
/// The the result of multipliplying the quaternion by `other`
|
|
pub fn mul_q(&self, other: &Quat<S>) -> Quat<S> {
|
|
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
|
|
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
|
|
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
|
|
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
|
|
}
|
|
|
|
/// The dot product of the quaternion and `other`
|
|
#[inline]
|
|
pub fn dot(&self, other: &Quat<S>) -> S {
|
|
self.s * other.s + self.v.dot(&other.v)
|
|
}
|
|
|
|
/// The conjugate of the quaternion
|
|
#[inline]
|
|
pub fn conjugate(&self) -> Quat<S> {
|
|
Quat::from_sv(self.s.clone(), -self.v.clone())
|
|
}
|
|
|
|
/// The multiplicative inverse of the quaternion
|
|
#[inline]
|
|
pub fn inverse(&self) -> Quat<S> {
|
|
self.conjugate().div_s(self.magnitude2())
|
|
}
|
|
|
|
/// The squared magnitude of the quaternion. This is useful for
|
|
/// magnitude comparisons where the exact magnitude does not need to be
|
|
/// calculated.
|
|
#[inline]
|
|
pub fn magnitude2(&self) -> S {
|
|
self.s * self.s + self.v.length2()
|
|
}
|
|
|
|
/// The magnitude of the quaternion
|
|
///
|
|
/// # Performance notes
|
|
///
|
|
/// For instances where the exact magnitude of the quaternion does not need
|
|
/// to be known, for example for quaternion-quaternion magnitude comparisons,
|
|
/// it is advisable to use the `magnitude2` method instead.
|
|
#[inline]
|
|
pub fn magnitude(&self) -> S {
|
|
sqrt(self.magnitude2())
|
|
}
|
|
|
|
/// The normalized quaternion
|
|
#[inline]
|
|
pub fn normalize(&self) -> Quat<S> {
|
|
self.mul_s(one::<S>() / self.magnitude())
|
|
}
|
|
|
|
/// Normalised linear interpolation
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// The intoperlated quaternion
|
|
pub fn nlerp(&self, other: &Quat<S>, amount: S) -> Quat<S> {
|
|
self.mul_s(one::<S>() - amount).add_q(&other.mul_s(amount)).normalize()
|
|
}
|
|
}
|
|
|
|
impl<S: Clone + Float> Quat<S> {
|
|
/// Spherical Linear Intoperlation
|
|
///
|
|
/// Perform a spherical linear interpolation between the quaternion and
|
|
/// `other`. Both quaternions should be normalized first.
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// The intoperlated quaternion
|
|
///
|
|
/// # Performance notes
|
|
///
|
|
/// The `acos` operation used in `slerp` is an expensive operation, so unless
|
|
/// your quarternions a far away from each other it's generally more advisable
|
|
/// to use `nlerp` when you know your rotations are going to be small.
|
|
///
|
|
/// - [Understanding Slerp, Then Not Using It]
|
|
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
|
|
/// - [Arcsynthesis OpenGL tutorial]
|
|
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
|
|
pub fn slerp(&self, other: &Quat<S>, amount: S) -> Quat<S> {
|
|
use std::num::cast;
|
|
|
|
let dot = self.dot(other);
|
|
let dot_threshold = cast(0.9995);
|
|
|
|
// if quaternions are close together use `nlerp`
|
|
if dot > dot_threshold {
|
|
self.nlerp(other, amount)
|
|
} else {
|
|
// stay within the domain of acos()
|
|
let robust_dot = dot.clamp(&-one::<S>(), &one::<S>());
|
|
|
|
let theta: Rad<S> = acos(robust_dot.clone()); // the angle between the quaternions
|
|
let theta: Rad<S> = theta.mul_s(amount); // the fraction of theta specified by `amount`
|
|
|
|
let q = other.sub_q(&self.mul_s(robust_dot))
|
|
.normalize();
|
|
|
|
self.mul_s(cos(theta.clone()))
|
|
.add_q(&q.mul_s(sin(theta)))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: Clone + Float> ToMat3<S> for Quat<S> {
|
|
/// Convert the quaternion to a 3 x 3 rotation matrix
|
|
fn to_mat3(&self) -> Mat3<S> {
|
|
let x2 = self.v.x + self.v.x;
|
|
let y2 = self.v.y + self.v.y;
|
|
let z2 = self.v.z + self.v.z;
|
|
|
|
let xx2 = x2 * self.v.x;
|
|
let xy2 = x2 * self.v.y;
|
|
let xz2 = x2 * self.v.z;
|
|
|
|
let yy2 = y2 * self.v.y;
|
|
let yz2 = y2 * self.v.z;
|
|
let zz2 = z2 * self.v.z;
|
|
|
|
let sy2 = y2 * self.s;
|
|
let sz2 = z2 * self.s;
|
|
let sx2 = x2 * self.s;
|
|
|
|
Mat3::new(one::<S>() - yy2 - zz2, xy2 + sz2, xz2 - sy2,
|
|
xy2 - sz2, one::<S>() - xx2 - zz2, yz2 + sx2,
|
|
xz2 + sy2, yz2 - sx2, one::<S>() - xx2 - yy2)
|
|
}
|
|
}
|
|
|
|
impl<S: Clone + Float> Neg<Quat<S>> for Quat<S> {
|
|
#[inline]
|
|
fn neg(&self) -> Quat<S> {
|
|
Quat::from_sv(-self.s, -self.v)
|
|
}
|
|
}
|
|
|
|
impl<S> ToStr for Quat<S> {
|
|
fn to_str(&self) -> ~str {
|
|
fmt!("%? + %?i + %?j + %?k", self.s, self.v.x, self.v.y, self.v.z)
|
|
}
|
|
}
|