cgmath/src-old/math/quat.rs
Brendan Zabarauskas 3673c4db6d Overhaul library, rename to cgmath
Moved the old source code temporarily to src-old. This will be removed once the functionality has been transferred over into the new system.

The new design is based on algebraic principles. Thanks goes to sebcrozet and his nalgebra library for providing the inspiration for the algebraic traits: https://github.com/sebcrozet/nalgebra
2013-08-26 15:08:25 +10:00

269 lines
8.3 KiB
Rust

// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Quaternion type
use math::{Dimensioned, SwapComponents};
use math::{Mat3, ToMat3};
use math::Vec3;
// GLSL-style type aliases
pub type quat = Quat<f32>;
pub type dquat = Quat<f64>;
// Rust-style type aliases
pub type Quatf = Quat<float>;
pub type Quatf32 = Quat<f32>;
pub type Quatf64 = Quat<f64>;
/// A quaternion in scalar/vector form
#[deriving(Clone, Eq)]
pub struct Quat<T> { s: T, v: Vec3<T> }
impl_dimensioned!(Quat, T, 4)
impl_swap_components!(Quat)
impl_approx!(Quat { s, v })
pub trait ToQuat<T> {
pub fn to_quat(&self) -> Quat<T>;
}
impl<T> Quat<T> {
/// Construct the quaternion from one scalar component and three
/// imaginary components
///
/// # Arguments
///
/// - `w`: the scalar component
/// - `xi`: the fist imaginary component
/// - `yj`: the second imaginary component
/// - `zk`: the third imaginary component
#[inline]
pub fn new(w: T, xi: T, yj: T, zk: T) -> Quat<T> {
Quat::from_sv(w, Vec3::new(xi, yj, zk))
}
/// Construct the quaternion from a scalar and a vector
///
/// # Arguments
///
/// - `s`: the scalar component
/// - `v`: a vector containing the three imaginary components
#[inline]
pub fn from_sv(s: T, v: Vec3<T>) -> Quat<T> {
Quat { s: s, v: v }
}
}
impl<T:Clone + Float> Quat<T> {
#[inline]
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Quat<T> {
Mat3::look_at(dir, up).to_quat()
}
#[inline]
pub fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Quat<T> {
Mat3::from_axes(x, y, z).to_quat()
}
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
#[inline]
pub fn identity() -> Quat<T> {
Quat::from_sv(one!(T), Vec3::zero())
}
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
#[inline]
pub fn zero() -> Quat<T> {
Quat::new(zero!(T), zero!(T), zero!(T), zero!(T))
}
/// The result of multiplying the quaternion a scalar
#[inline]
pub fn mul_s(&self, value: T) -> Quat<T> {
Quat::from_sv(self.s * value, self.v.mul_s(value))
}
/// The result of dividing the quaternion a scalar
#[inline]
pub fn div_s(&self, value: T) -> Quat<T> {
Quat::from_sv(self.s / value, self.v.div_s(value))
}
/// The result of multiplying the quaternion by a vector
#[inline]
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
let tmp = self.v.cross(vec).add_v(&vec.mul_s(self.s.clone()));
self.v.cross(&tmp).mul_s(two!(T)).add_v(vec)
}
/// The sum of this quaternion and `other`
#[inline]
pub fn add_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(*self.i(0) + *other.i(0),
*self.i(1) + *other.i(1),
*self.i(2) + *other.i(2),
*self.i(3) + *other.i(3))
}
/// The sum of this quaternion and `other`
#[inline]
pub fn sub_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(*self.i(0) - *other.i(0),
*self.i(1) - *other.i(1),
*self.i(2) - *other.i(2),
*self.i(3) - *other.i(3))
}
/// The the result of multipliplying the quaternion by `other`
pub fn mul_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
}
/// The dot product of the quaternion and `other`
#[inline]
pub fn dot(&self, other: &Quat<T>) -> T {
self.s * other.s + self.v.dot(&other.v)
}
/// The conjugate of the quaternion
#[inline]
pub fn conjugate(&self) -> Quat<T> {
Quat::from_sv(self.s.clone(), -self.v.clone())
}
/// The multiplicative inverse of the quaternion
#[inline]
pub fn inverse(&self) -> Quat<T> {
self.conjugate().div_s(self.magnitude2())
}
/// The squared magnitude of the quaternion. This is useful for
/// magnitude comparisons where the exact magnitude does not need to be
/// calculated.
#[inline]
pub fn magnitude2(&self) -> T {
self.s * self.s + self.v.magnitude2()
}
/// The magnitude of the quaternion
///
/// # Performance notes
///
/// For instances where the exact magnitude of the quaternion does not need
/// to be known, for example for quaternion-quaternion magnitude comparisons,
/// it is advisable to use the `magnitude2` method instead.
#[inline]
pub fn magnitude(&self) -> T {
self.magnitude2().sqrt()
}
/// The normalized quaternion
#[inline]
pub fn normalize(&self) -> Quat<T> {
self.mul_s(one!(T) / self.magnitude())
}
/// Normalised linear interpolation
///
/// # Return value
///
/// The intoperlated quaternion
pub fn nlerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
self.mul_s(one!(T) - amount).add_q(&other.mul_s(amount)).normalize()
}
/// Spherical Linear Intoperlation
///
/// Perform a spherical linear interpolation between the quaternion and
/// `other`. Both quaternions should be normalized first.
///
/// # Return value
///
/// The intoperlated quaternion
///
/// # Performance notes
///
/// The `acos` operation used in `slerp` is an expensive operation, so unless
/// your quarternions a far away from each other it's generally more advisable
/// to use `nlerp` when you know your rotations are going to be small.
///
/// - [Understanding Slerp, Then Not Using It]
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial]
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
pub fn slerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
use std::num::cast;
let dot = self.dot(other);
let dot_threshold = cast(0.9995);
// if quaternions are close together use `nlerp`
if dot > dot_threshold {
self.nlerp(other, amount)
} else {
// stay within the domain of acos()
let robust_dot = dot.clamp(&-one!(T), &one!(T));
let theta_0 = robust_dot.acos(); // the angle between the quaternions
let theta = theta_0 * amount; // the fraction of theta specified by `amount`
let q = other.sub_q(&self.mul_s(robust_dot))
.normalize();
self.mul_s(theta.cos())
.add_q(&q.mul_s(theta.sin()))
}
}
}
impl<T:Clone + Num> ToMat3<T> for Quat<T> {
/// Convert the quaternion to a 3 x 3 rotation matrix
pub fn to_mat3(&self) -> Mat3<T> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
let _1: T = one!(T);
Mat3::new(_1 - yy2 - zz2, xy2 + sz2, xz2 - sy2,
xy2 - sz2, _1 - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, _1 - xx2 - yy2)
}
}
impl<T:Clone + Float> Neg<Quat<T>> for Quat<T> {
#[inline]
pub fn neg(&self) -> Quat<T> {
Quat::from_sv(-self.s, -self.v)
}
}