cgmath/src-old/math/plane.rs
Brendan Zabarauskas 3673c4db6d Overhaul library, rename to cgmath
Moved the old source code temporarily to src-old. This will be removed once the functionality has been transferred over into the new system.

The new design is based on algebraic principles. Thanks goes to sebcrozet and his nalgebra library for providing the inspiration for the algebraic traits: https://github.com/sebcrozet/nalgebra
2013-08-26 15:08:25 +10:00

187 lines
6.6 KiB
Rust

// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Three-dimensional plane type
use math::{Vec3, Vec4, Mat3};
use math::{Point, Point3};
use math::Ray3;
/// A plane formed from the equation: `Ax + Bx + Cx + D = 0`
///
/// # Fields
///
/// - `normal`: the normal of the plane where:
/// - `normal.x`: corresponds to `A` in the plane equation
/// - `normal.y`: corresponds to `B` in the plane equation
/// - `normal.z`: corresponds to `C` in the plane equation
/// - `distance`: the distance value, corresponding to `D` in the plane equation
#[deriving(Clone, Eq)]
pub struct Plane3<T> {
normal: Vec3<T>,
distance: T,
}
impl_approx!(Plane3 { normal, distance })
impl<T:Clone + Float> Plane3<T> {
/// # Arguments
///
/// - `a`: the `x` component of the normal
/// - `b`: the `y` component of the normal
/// - `c`: the `z` component of the normal
/// - `d`: the plane's distance value
pub fn from_abcd(a: T, b: T, c: T, d: T) -> Plane3<T> {
Plane3 {
normal: Vec3::new(a, b, c),
distance: d,
}
}
/// Construct a plane from a normal vector and a scalar distance
pub fn from_nd(normal: Vec3<T>, distance: T) -> Plane3<T> {
Plane3 { normal: normal, distance: distance }
}
/// Construct a plane from the components of a four-dimensional vector
pub fn from_vec4(vec: Vec4<T>) -> Plane3<T> {
Plane3::from_abcd(vec.x.clone(), vec.y.clone(), vec.z.clone(), vec.w.clone())
}
/// Compute the distance from the plane to the point
pub fn distance(&self, pos: &Point3<T>) -> T {
self.normal.dot(pos.as_vec3()) + self.distance
}
/// Computes the point at which `ray` intersects the plane
pub fn intersection_r(&self, _ray: &Ray3<T>) -> Point3<T> {
fail!(~"not yet implemented")
}
/// Returns `true` if the ray intersects the plane
pub fn intersects(&self, _ray: &Ray3<T>) -> bool {
fail!(~"not yet implemented")
}
/// Returns `true` if `pos` is located behind the plane - otherwise it returns `false`
pub fn contains(&self, pos: &Point3<T>) -> bool {
self.distance(pos) < zero!(T)
}
}
impl<T:Clone + Float> Plane3<T> {
/// Constructs a plane that passes through the the three points `a`, `b` and `c`
pub fn from_3p(a: Point3<T>,
b: Point3<T>,
c: Point3<T>) -> Option<Plane3<T>> {
// create two vectors that run parallel to the plane
let v0 = (b - a);
let v1 = (c - a);
// find the vector that is perpendicular to v1 and v2
let mut normal = v0.cross(&v1);
if normal.approx_eq(&Vec3::zero()) {
None
} else {
// compute the normal and the distance to the plane
normal.normalize_self();
let distance = -a.as_vec3().dot(&normal);
Some(Plane3::from_nd(normal, distance))
}
}
/// Computes the ray created from the two-plane intersection of `self` and `other`
///
/// # Return value
///
/// - `Some(r)`: The ray `r` where the planes intersect.
/// - `None`: No valid intersection was found. The planes are probably parallel.
pub fn intersection_2pl(&self, other: &Plane3<T>) -> Option<Ray3<T>> {
let dir = self.normal.cross(&other.normal);
if dir.approx_eq(&Vec3::zero::<T>()) {
None // the planes are parallel
} else {
// The end-point of the ray is at the three-plane intersection between
// `self`, `other`, and a tempory plane positioned at the origin
do Plane3::from_nd(dir.clone(), zero!(T)).intersection_3pl(self, other).map |origin| {
Ray3 {
origin: origin.clone(),
direction: dir.clone(),
}
}
}
}
/// Computes the three-plane intersection between `self`, `other_a` and `other_b`.
///
/// # Return value
///
/// - `Some(p)`: The position vector `p` where the planes intersect.
/// - `None`: No valid intersection was found. The normals of the three
/// planes are probably coplanar.
pub fn intersection_3pl(&self, other_a: &Plane3<T>, other_b: &Plane3<T>) -> Option<Point3<T>> {
let mx = Mat3::new(self.normal.x.clone(), other_a.normal.x.clone(), other_b.normal.x.clone(),
self.normal.y.clone(), other_a.normal.y.clone(), other_b.normal.y.clone(),
self.normal.z.clone(), other_a.normal.z.clone(), other_b.normal.z.clone());
do mx.inverse().map |m| {
Point3::origin() + m.mul_v(&Vec3::new(self.distance.clone(),
other_a.distance.clone(),
other_b.distance.clone()))
}
}
}
impl<T> ToStr for Plane3<T> {
pub fn to_str(&self) -> ~str {
fmt!("%?x + %?y + %?z + %? = 0",
self.normal.x,
self.normal.y,
self.normal.z,
self.distance)
}
}
#[cfg(test)]
mod tests {
use math::plane::*;
use math::point::*;
#[test]
fn test_from_3p() {
assert_eq!(Plane3::from_3p(Point3::new(5f, 0f, 5f),
Point3::new(5f, 5f, 5f),
Point3::new(5f, 0f, -1f)), Some(Plane3::from_abcd(-1f, 0f, 0f, 5f)));
assert_eq!(Plane3::from_3p(Point3::new(0f, 5f, -5f),
Point3::new(0f, 5f, 0f),
Point3::new(0f, 5f, 5f)), None); // The points are parallel
}
#[test]
fn test_plane_intersection_3pl() {
let p0 = Plane3::from_abcd(1.0, 0.0, 0.0, 1.0);
let p1 = Plane3::from_abcd(0.0, -1.0, 0.0, 2.0);
let p2 = Plane3::from_abcd(0.0, 0.0, 1.0, 1.0);
assert_eq!(p0.intersection_3pl(&p1, &p2), Some(Point3::new(1.0, -2.0, 1.0)));
}
#[test]
fn test_to_str() {
assert_eq!(Plane3::from_abcd(1.0, 2.0, 3.0, 4.0).to_str(), ~"1x + 2y + 3z + 4 = 0");
}
}