cgmath/src/projection.rs
2017-06-06 16:48:55 -04:00

224 lines
7.7 KiB
Rust

// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use num_traits::{Zero};
use num_traits::cast;
use structure::Angle;
use angle::Rad;
use matrix::Matrix4;
use num::BaseFloat;
/// Create a perspective projection matrix.
///
/// This is the equivalent to the [gluPerspective]
/// (http://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml) function.
pub fn perspective<S: BaseFloat, A: Into<Rad<S>>>(fovy: A, aspect: S, near: S, far: S) -> Matrix4<S> {
PerspectiveFov {
fovy: fovy.into(),
aspect: aspect,
near: near,
far: far,
}.into()
}
/// Create a perspective matrix from a view frustrum.
///
/// This is the equivalent of the now deprecated [glFrustrum]
/// (http://www.opengl.org/sdk/docs/man2/xhtml/glFrustum.xml) function.
pub fn frustum<S: BaseFloat>(left: S, right: S, bottom: S, top: S, near: S, far: S) -> Matrix4<S> {
Perspective {
left: left,
right: right,
bottom: bottom,
top: top,
near: near,
far: far,
}.into()
}
/// Create an orthographic projection matrix.
///
/// This is the equivalent of the now deprecated [glOrtho]
/// (http://www.opengl.org/sdk/docs/man2/xhtml/glOrtho.xml) function.
pub fn ortho<S: BaseFloat>(left: S, right: S, bottom: S, top: S, near: S, far: S) -> Matrix4<S> {
Ortho {
left: left,
right: right,
bottom: bottom,
top: top,
near: near,
far: far,
}.into()
}
/// A perspective projection based on a vertical field-of-view angle.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PerspectiveFov<S> {
pub fovy: Rad<S>,
pub aspect: S,
pub near: S,
pub far: S,
}
impl<S: BaseFloat> PerspectiveFov<S> {
pub fn to_perspective(&self) -> Perspective<S> {
let two: S = cast(2).unwrap();
let angle = self.fovy / two;
let ymax = self.near * Rad::tan(angle);
let xmax = ymax * self.aspect;
Perspective {
left: -xmax,
right: xmax,
bottom: -ymax,
top: ymax,
near: self.near.clone(),
far: self.far.clone(),
}
}
}
impl<S: BaseFloat> From<PerspectiveFov<S>> for Matrix4<S> {
fn from(persp: PerspectiveFov<S>) -> Matrix4<S> {
assert!(persp.fovy > Rad::zero(), "The vertical field of view cannot be below zero, found: {:?}", persp.fovy);
assert!(persp.fovy < Rad::turn_div_2(), "The vertical field of view cannot be greater than a half turn, found: {:?}", persp.fovy);
assert!(persp.aspect > S::zero(), "The aspect ratio cannot be below zero, found: {:?}", persp.aspect);
assert!(persp.near > S::zero(), "The near plane distance cannot be below zero, found: {:?}", persp.near);
assert!(persp.far > S::zero(), "The far plane distance cannot be below zero, found: {:?}", persp.far);
assert!(persp.far > persp.near, "The far plane cannot be closer than the near plane, found: far: {:?}, near: {:?}", persp.far, persp.near);
let two: S = cast(2).unwrap();
let f = Rad::cot(persp.fovy / two);
let c0r0 = f / persp.aspect;
let c0r1 = S::zero();
let c0r2 = S::zero();
let c0r3 = S::zero();
let c1r0 = S::zero();
let c1r1 = f;
let c1r2 = S::zero();
let c1r3 = S::zero();
let c2r0 = S::zero();
let c2r1 = S::zero();
let c2r2 = (persp.far + persp.near) / (persp.near - persp.far);
let c2r3 = -S::one();
let c3r0 = S::zero();
let c3r1 = S::zero();
let c3r2 = (two * persp.far * persp.near) / (persp.near - persp.far);
let c3r3 = S::zero();
Matrix4::new(c0r0, c0r1, c0r2, c0r3,
c1r0, c1r1, c1r2, c1r3,
c2r0, c2r1, c2r2, c2r3,
c3r0, c3r1, c3r2, c3r3)
}
}
/// A perspective projection with arbitrary left/right/bottom/top distances
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Perspective<S> {
pub left: S,
pub right: S,
pub bottom: S,
pub top: S,
pub near: S,
pub far: S,
}
impl<S: BaseFloat> From<Perspective<S>> for Matrix4<S> {
fn from(persp: Perspective<S>) -> Matrix4<S> {
assert!(persp.left <= persp.right, "`left` cannot be greater than `right`, found: left: {:?} right: {:?}", persp.left, persp.right);
assert!(persp.bottom <= persp.top, "`bottom` cannot be greater than `top`, found: bottom: {:?} top: {:?}", persp.bottom, persp.top);
assert!(persp.near <= persp.far, "`near` cannot be greater than `far`, found: near: {:?} far: {:?}", persp.near, persp.far);
let two: S = cast(2i8).unwrap();
let c0r0 = (two * persp.near) / (persp.right - persp.left);
let c0r1 = S::zero();
let c0r2 = S::zero();
let c0r3 = S::zero();
let c1r0 = S::zero();
let c1r1 = (two * persp.near) / (persp.top - persp.bottom);
let c1r2 = S::zero();
let c1r3 = S::zero();
let c2r0 = (persp.right + persp.left) / (persp.right - persp.left);
let c2r1 = (persp.top + persp.bottom) / (persp.top - persp.bottom);
let c2r2 = -(persp.far + persp.near) / (persp.far - persp.near);
let c2r3 = -S::one();
let c3r0 = S::zero();
let c3r1 = S::zero();
let c3r2 = -(two * persp.far * persp.near) / (persp.far - persp.near);
let c3r3 = S::zero();
Matrix4::new(c0r0, c0r1, c0r2, c0r3,
c1r0, c1r1, c1r2, c1r3,
c2r0, c2r1, c2r2, c2r3,
c3r0, c3r1, c3r2, c3r3)
}
}
/// An orthographic projection with arbitrary left/right/bottom/top distances
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Ortho<S> {
pub left: S,
pub right: S,
pub bottom: S,
pub top: S,
pub near: S,
pub far: S,
}
impl<S: BaseFloat> From<Ortho<S>> for Matrix4<S> {
fn from(ortho: Ortho<S>) -> Matrix4<S> {
let two: S = cast(2).unwrap();
let c0r0 = two / (ortho.right - ortho.left);
let c0r1 = S::zero();
let c0r2 = S::zero();
let c0r3 = S::zero();
let c1r0 = S::zero();
let c1r1 = two / (ortho.top - ortho.bottom);
let c1r2 = S::zero();
let c1r3 = S::zero();
let c2r0 = S::zero();
let c2r1 = S::zero();
let c2r2 = -two / (ortho.far - ortho.near);
let c2r3 = S::zero();
let c3r0 = -(ortho.right + ortho.left) / (ortho.right - ortho.left);
let c3r1 = -(ortho.top + ortho.bottom) / (ortho.top - ortho.bottom);
let c3r2 = -(ortho.far + ortho.near) / (ortho.far - ortho.near);
let c3r3 = S::one();
Matrix4::new(c0r0, c0r1, c0r2, c0r3,
c1r0, c1r1, c1r2, c1r3,
c2r0, c2r1, c2r2, c2r3,
c3r0, c3r1, c3r2, c3r3)
}
}