3673c4db6d
Moved the old source code temporarily to src-old. This will be removed once the functionality has been transferred over into the new system. The new design is based on algebraic principles. Thanks goes to sebcrozet and his nalgebra library for providing the inspiration for the algebraic traits: https://github.com/sebcrozet/nalgebra
1677 lines
51 KiB
Rust
1677 lines
51 KiB
Rust
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
|
|
// refer to the AUTHORS file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! Matrix types
|
|
|
|
use math::{Dimensioned, SwapComponents};
|
|
use math::{Quat, ToQuat};
|
|
use math::{Vec2, Vec3, Vec4};
|
|
|
|
pub trait Mat<T,Vec,Slice>: Dimensioned<Vec,Slice>
|
|
+ SwapComponents {
|
|
pub fn c<'a>(&'a self, c: uint) -> &'a Vec;
|
|
pub fn r(&self, r: uint) -> Vec;
|
|
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T;
|
|
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec;
|
|
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T;
|
|
pub fn swap_c(&mut self, a: uint, b: uint);
|
|
pub fn swap_r(&mut self, a: uint, b: uint);
|
|
pub fn swap_cr(&mut self, a: (uint, uint), b: (uint, uint));
|
|
pub fn transpose(&self) -> Self;
|
|
pub fn transpose_self(&mut self);
|
|
}
|
|
|
|
pub trait NumMat<T,Vec,Slice>: Mat<T,Vec,Slice> + Neg<Self> {
|
|
pub fn mul_s(&self, value: T) -> Self;
|
|
pub fn mul_v(&self, vec: &Vec) -> Vec;
|
|
pub fn add_m(&self, other: &Self) -> Self;
|
|
pub fn sub_m(&self, other: &Self) -> Self;
|
|
pub fn mul_m(&self, other: &Self) -> Self;
|
|
pub fn mul_self_s(&mut self, value: T);
|
|
pub fn add_self_m(&mut self, other: &Self);
|
|
pub fn sub_self_m(&mut self, other: &Self);
|
|
pub fn dot(&self, other: &Self) -> T;
|
|
pub fn determinant(&self) -> T;
|
|
pub fn trace(&self) -> T;
|
|
pub fn to_identity(&mut self);
|
|
pub fn to_zero(&mut self);
|
|
}
|
|
|
|
pub trait FloatMat<T,Vec,Slice>: NumMat<T,Vec,Slice> {
|
|
pub fn inverse(&self) -> Option<Self>;
|
|
pub fn invert_self(&mut self);
|
|
pub fn is_identity(&self) -> bool;
|
|
pub fn is_diagonal(&self) -> bool;
|
|
pub fn is_rotated(&self) -> bool;
|
|
pub fn is_symmetric(&self) -> bool;
|
|
pub fn is_invertible(&self) -> bool;
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
pub struct Mat2<T> {
|
|
x: Vec2<T>,
|
|
y: Vec2<T>,
|
|
}
|
|
|
|
// GLSL-style type aliases
|
|
pub type mat2 = Mat2<f32>;
|
|
pub type dmat2 = Mat2<f64>;
|
|
|
|
// Rust-style type aliases
|
|
pub type Mat2f = Mat2<float>;
|
|
pub type Mat2f32 = Mat2<f32>;
|
|
pub type Mat2f64 = Mat2<f64>;
|
|
|
|
impl_dimensioned!(Mat2, Vec2<T>, 2)
|
|
impl_swap_components!(Mat2)
|
|
impl_approx!(Mat3 { x, y, z })
|
|
|
|
pub trait ToMat2<T> {
|
|
pub fn to_mat2(&self) -> Mat2<T>;
|
|
}
|
|
|
|
impl<T> Mat2<T> {
|
|
#[inline]
|
|
pub fn new(c0r0: T, c0r1: T,
|
|
c1r0: T, c1r1: T) -> Mat2<T> {
|
|
Mat2::from_cols(Vec2::new(c0r0, c0r1),
|
|
Vec2::new(c1r0, c1r1))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_cols(c0: Vec2<T>,
|
|
c1: Vec2<T>) -> Mat2<T> {
|
|
Mat2 { x: c0, y: c1 }
|
|
}
|
|
}
|
|
|
|
impl<T:Clone> Mat<T,Vec2<T>,[Vec2<T>,..2]> for Mat2<T> {
|
|
#[inline]
|
|
pub fn c<'a>(&'a self, c: uint) -> &'a Vec2<T> {
|
|
self.i(c)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn r(&self, r: uint) -> Vec2<T> {
|
|
Vec2::new(self.i(0).i(r).clone(),
|
|
self.i(1).i(r).clone())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T {
|
|
self.i(c).i(r)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec2<T> {
|
|
self.mut_i(c)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T {
|
|
self.mut_i(c).mut_i(r)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_c(&mut self, a: uint, b: uint) {
|
|
let tmp = self.c(a).clone();
|
|
*self.mut_c(a) = self.c(b).clone();
|
|
*self.mut_c(b) = tmp;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_r(&mut self, a: uint, b: uint) {
|
|
self.mut_c(0).swap(a, b);
|
|
self.mut_c(1).swap(a, b);
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_cr(&mut self, (col_a, row_a): (uint, uint),
|
|
(col_b, row_b): (uint, uint)) {
|
|
let tmp = self.cr(col_a, row_a).clone();
|
|
*self.mut_cr(col_a, row_a) = self.cr(col_b, row_b).clone();
|
|
*self.mut_cr(col_b, row_b) = tmp;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transpose(&self) -> Mat2<T> {
|
|
Mat2::new(self.cr(0, 0).clone(), self.cr(1, 0).clone(),
|
|
self.cr(0, 1).clone(), self.cr(1, 1).clone())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transpose_self(&mut self) {
|
|
self.swap_cr((0, 1), (1, 0));
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> ToMat3<T> for Mat2<T> {
|
|
#[inline]
|
|
pub fn to_mat3(&self) -> Mat3<T> {
|
|
Mat3::new(self.cr(0, 0).clone(), self.cr(0, 1).clone(), zero!(T),
|
|
self.cr(1, 0).clone(), self.cr(1, 1).clone(), zero!(T),
|
|
zero!(T), zero!(T), one!(T))
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> ToMat4<T> for Mat2<T> {
|
|
#[inline]
|
|
pub fn to_mat4(&self) -> Mat4<T> {
|
|
Mat4::new(self.cr(0, 0).clone(), self.cr(0, 1).clone(), zero!(T), zero!(T),
|
|
self.cr(1, 0).clone(), self.cr(1, 1).clone(), zero!(T), zero!(T),
|
|
zero!(T), zero!(T), one!(T), zero!(T),
|
|
zero!(T), zero!(T), zero!(T), one!(T))
|
|
}
|
|
}
|
|
|
|
impl<T:Num> Mat2<T> {
|
|
#[inline]
|
|
pub fn identity() -> Mat2<T> {
|
|
Mat2::from_cols(Vec2::unit_x(),
|
|
Vec2::unit_y())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn zero() -> Mat2<T> {
|
|
Mat2::from_cols(Vec2::zero(),
|
|
Vec2::zero())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> Mat2<T> {
|
|
#[inline]
|
|
pub fn from_value(value: T) -> Mat2<T> {
|
|
Mat2::new(value.clone(), zero!(T),
|
|
zero!(T), value.clone())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> NumMat<T,Vec2<T>,[Vec2<T>,..2]> for Mat2<T> {
|
|
#[inline]
|
|
pub fn mul_s(&self, value: T) -> Mat2<T> {
|
|
Mat2::from_cols(self.c(0).mul_s(value.clone()),
|
|
self.c(1).mul_s(value.clone()))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
|
|
Vec2::new(self.r(0).dot(vec),
|
|
self.r(1).dot(vec))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
|
|
Mat2::from_cols(self.c(0).add_v(other.c(0)),
|
|
self.c(1).add_v(other.c(1)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
|
|
Mat2::from_cols(self.c(0).sub_v(other.c(0)),
|
|
self.c(1).sub_v(other.c(1)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
|
|
Mat2::new(self.r(0).dot(other.c(0)), self.r(1).dot(other.c(0)),
|
|
self.r(0).dot(other.c(1)), self.r(1).dot(other.c(1)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_self_s(&mut self, value: T) {
|
|
self.mut_c(0).mul_self_s(value.clone());
|
|
self.mut_c(1).mul_self_s(value.clone());
|
|
}
|
|
|
|
#[inline]
|
|
pub fn add_self_m(&mut self, other: &Mat2<T>) {
|
|
self.mut_c(0).add_self_v(other.c(0));
|
|
self.mut_c(1).add_self_v(other.c(1));
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sub_self_m(&mut self, other: &Mat2<T>) {
|
|
self.mut_c(0).sub_self_v(other.c(0));
|
|
self.mut_c(1).sub_self_v(other.c(1));
|
|
}
|
|
|
|
pub fn dot(&self, other: &Mat2<T>) -> T {
|
|
other.transpose().mul_m(self).trace()
|
|
}
|
|
|
|
pub fn determinant(&self) -> T {
|
|
*self.cr(0, 0) * *self.cr(1, 1) - *self.cr(1, 0) * *self.cr(0, 1)
|
|
}
|
|
|
|
pub fn trace(&self) -> T {
|
|
*self.cr(0, 0) + *self.cr(1, 1)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_identity(&mut self) {
|
|
*self = Mat2::identity();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_zero(&mut self) {
|
|
*self = Mat2::zero();
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> Neg<Mat2<T>> for Mat2<T> {
|
|
#[inline]
|
|
pub fn neg(&self) -> Mat2<T> {
|
|
Mat2::from_cols(-*self.c(0),
|
|
-*self.c(1))
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Float> Mat2<T> {
|
|
#[inline]
|
|
pub fn from_angle(radians: T) -> Mat2<T> {
|
|
let cos_theta = radians.cos();
|
|
let sin_theta = radians.sin();
|
|
|
|
Mat2::new(cos_theta.clone(), -sin_theta.clone(),
|
|
sin_theta.clone(), cos_theta.clone())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Float> FloatMat<T,Vec2<T>,[Vec2<T>,..2]> for Mat2<T> {
|
|
#[inline]
|
|
pub fn inverse(&self) -> Option<Mat2<T>> {
|
|
let d = self.determinant();
|
|
if d.approx_eq(&zero!(T)) {
|
|
None
|
|
} else {
|
|
Some(Mat2::new(self.cr(1, 1) / d, -self.cr(0, 1) / d,
|
|
-self.cr(1, 0) / d, self.cr(0, 0) / d))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn invert_self(&mut self) {
|
|
*self = self.inverse().expect("Couldn't invert the matrix!");
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_identity(&self) -> bool {
|
|
self.approx_eq(&Mat2::identity())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_diagonal(&self) -> bool {
|
|
self.cr(0, 1).approx_eq(&zero!(T)) &&
|
|
self.cr(1, 0).approx_eq(&zero!(T))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_rotated(&self) -> bool {
|
|
!self.approx_eq(&Mat2::identity())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_symmetric(&self) -> bool {
|
|
self.cr(0, 1).approx_eq(self.cr(1, 0)) &&
|
|
self.cr(1, 0).approx_eq(self.cr(0, 1))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_invertible(&self) -> bool {
|
|
!self.determinant().approx_eq(&zero!(T))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod mat2_tests{
|
|
use math::mat::*;
|
|
use math::vec::*;
|
|
|
|
static A: Mat2<float> = Mat2 { x: Vec2 { x: 1.0, y: 3.0 },
|
|
y: Vec2 { x: 2.0, y: 4.0 } };
|
|
static B: Mat2<float> = Mat2 { x: Vec2 { x: 2.0, y: 4.0 },
|
|
y: Vec2 { x: 3.0, y: 5.0 } };
|
|
static C: Mat2<float> = Mat2 { x: Vec2 { x: 2.0, y: 1.0 },
|
|
y: Vec2 { x: 1.0, y: 2.0 } };
|
|
|
|
static V: Vec2<float> = Vec2 { x: 1.0, y: 2.0 };
|
|
static F: float = 0.5;
|
|
|
|
#[test]
|
|
fn test_swap_c() {
|
|
let mut mut_a = A;
|
|
mut_a.swap_c(0, 1);
|
|
assert_eq!(mut_a.c(0), A.c(1));
|
|
assert_eq!(mut_a.c(1), A.c(0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_r() {
|
|
let mut mut_a = A;
|
|
mut_a.swap_r(0, 1);
|
|
assert_eq!(mut_a.r(0), A.r(1));
|
|
assert_eq!(mut_a.r(1), A.r(0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_identity() {
|
|
assert_eq!(Mat2::identity::<float>(),
|
|
Mat2::new::<float>(1.0, 0.0,
|
|
0.0, 1.0));
|
|
let mut mut_a = A;
|
|
mut_a.to_identity();
|
|
assert!(mut_a.is_identity());
|
|
}
|
|
|
|
#[test]
|
|
fn test_zero() {
|
|
assert_eq!(Mat2::zero::<float>(),
|
|
Mat2::new::<float>(0.0, 0.0,
|
|
0.0, 0.0));
|
|
let mut mut_a = A;
|
|
mut_a.to_zero();
|
|
assert_eq!(mut_a, Mat2::zero::<float>());
|
|
}
|
|
|
|
#[test]
|
|
fn test_determinant() {
|
|
assert_eq!(A.determinant(), -2.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_trace() {
|
|
assert_eq!(A.trace(), 5.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_neg() {
|
|
assert_eq!(A.neg(),
|
|
Mat2::new::<float>(-1.0, -3.0,
|
|
-2.0, -4.0));
|
|
assert_eq!(-A, A.neg());
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_s() {
|
|
assert_eq!(A.mul_s(F),
|
|
Mat2::new::<float>(0.5, 1.5,
|
|
1.0, 2.0));
|
|
let mut mut_a = A;
|
|
mut_a.mul_self_s(F);
|
|
assert_eq!(mut_a, A.mul_s(F));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_v() {
|
|
assert_eq!(A.mul_v(&V), Vec2::new::<float>(5.0, 11.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_add_m() {
|
|
assert_eq!(A.add_m(&B),
|
|
Mat2::new::<float>(3.0, 7.0,
|
|
5.0, 9.0));
|
|
let mut mut_a = A;
|
|
mut_a.add_self_m(&B);
|
|
assert_eq!(mut_a, A.add_m(&B));
|
|
}
|
|
|
|
#[test]
|
|
fn test_sub_m() {
|
|
assert_eq!(A.sub_m(&B),
|
|
Mat2::new::<float>(-1.0, -1.0,
|
|
-1.0, -1.0));
|
|
let mut mut_a = A;
|
|
mut_a.sub_self_m(&B);
|
|
assert_eq!(mut_a, A.sub_m(&B));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_m() {
|
|
assert_eq!(A.mul_m(&B),
|
|
Mat2::new::<float>(10.0, 22.0,
|
|
13.0, 29.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_dot() {
|
|
assert_eq!(A.dot(&B), 40.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose() {
|
|
assert_eq!(A.transpose(),
|
|
Mat2::new::<float>(1.0, 2.0,
|
|
3.0, 4.0));
|
|
let mut mut_a = A;
|
|
mut_a.transpose_self();
|
|
assert_eq!(mut_a, A.transpose());
|
|
}
|
|
|
|
#[test]
|
|
fn test_inverse() {
|
|
assert!(Mat2::identity::<float>().inverse().unwrap().is_identity());
|
|
|
|
assert_eq!(A.inverse().unwrap(),
|
|
Mat2::new::<float>(-2.0, 1.5,
|
|
1.0, -0.5));
|
|
assert!(Mat2::new::<float>(0.0, 2.0,
|
|
0.0, 5.0).inverse().is_none());
|
|
let mut mut_a = A;
|
|
mut_a.invert_self();
|
|
assert_eq!(mut_a, A.inverse().unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_predicates() {
|
|
assert!(Mat2::identity::<float>().is_identity());
|
|
assert!(Mat2::identity::<float>().is_symmetric());
|
|
assert!(Mat2::identity::<float>().is_diagonal());
|
|
assert!(!Mat2::identity::<float>().is_rotated());
|
|
assert!(Mat2::identity::<float>().is_invertible());
|
|
|
|
assert!(!A.is_identity());
|
|
assert!(!A.is_symmetric());
|
|
assert!(!A.is_diagonal());
|
|
assert!(A.is_rotated());
|
|
assert!(A.is_invertible());
|
|
|
|
assert!(!C.is_identity());
|
|
assert!(C.is_symmetric());
|
|
assert!(!C.is_diagonal());
|
|
assert!(C.is_rotated());
|
|
assert!(C.is_invertible());
|
|
|
|
assert!(Mat2::from_value::<float>(6.0).is_diagonal());
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_mat3() {
|
|
assert_eq!(A.to_mat3(),
|
|
Mat3::new::<float>(1.0, 3.0, 0.0,
|
|
2.0, 4.0, 0.0,
|
|
0.0, 0.0, 1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_mat4() {
|
|
assert_eq!(A.to_mat4(),
|
|
Mat4::new::<float>(1.0, 3.0, 0.0, 0.0,
|
|
2.0, 4.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0, 0.0,
|
|
0.0, 0.0, 0.0, 1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_approx() {
|
|
assert!(!Mat2::new::<float>(0.000001, 0.000001,
|
|
0.000001, 0.000001).approx_eq(&Mat2::zero::<float>()));
|
|
assert!(Mat2::new::<float>(0.0000001, 0.0000001,
|
|
0.0000001, 0.0000001).approx_eq(&Mat2::zero::<float>()));
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
pub struct Mat3<T> {
|
|
x: Vec3<T>,
|
|
y: Vec3<T>,
|
|
z: Vec3<T>,
|
|
}
|
|
|
|
// GLSL-style type aliases
|
|
pub type mat3 = Mat3<f32>;
|
|
pub type dmat3 = Mat3<f64>;
|
|
|
|
// Rust-style type aliases
|
|
pub type Mat3f = Mat3<float>;
|
|
pub type Mat3f32 = Mat3<f32>;
|
|
pub type Mat3f64 = Mat3<f64>;
|
|
|
|
impl_dimensioned!(Mat3, Vec3<T>, 3)
|
|
impl_swap_components!(Mat3)
|
|
impl_approx!(Mat2 { x, y })
|
|
|
|
pub trait ToMat3<T> {
|
|
pub fn to_mat3(&self) -> Mat3<T>;
|
|
}
|
|
|
|
impl<T> Mat3<T> {
|
|
#[inline]
|
|
pub fn new(c0r0:T, c0r1:T, c0r2:T,
|
|
c1r0:T, c1r1:T, c1r2:T,
|
|
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
|
|
Mat3::from_cols(Vec3::new(c0r0, c0r1, c0r2),
|
|
Vec3::new(c1r0, c1r1, c1r2),
|
|
Vec3::new(c2r0, c2r1, c2r2))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_cols(c0: Vec3<T>,
|
|
c1: Vec3<T>,
|
|
c2: Vec3<T>) -> Mat3<T> {
|
|
Mat3 { x: c0, y: c1, z: c2 }
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_axes(x: Vec3<T>,
|
|
y: Vec3<T>,
|
|
z: Vec3<T>) -> Mat3<T> {
|
|
Mat3 { x: x, y: y, z: z }
|
|
}
|
|
}
|
|
|
|
impl<T:Clone> Mat<T,Vec3<T>,[Vec3<T>,..3]> for Mat3<T> {
|
|
#[inline]
|
|
pub fn c<'a>(&'a self, c: uint) -> &'a Vec3<T> {
|
|
self.i(c)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn r(&self, r: uint) -> Vec3<T> {
|
|
Vec3::new(self.i(0).i(r).clone(),
|
|
self.i(1).i(r).clone(),
|
|
self.i(2).i(r).clone())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T {
|
|
self.i(c).i(r)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec3<T> {
|
|
self.mut_i(c)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T {
|
|
self.mut_i(c).mut_i(r)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_c(&mut self, a: uint, b: uint) {
|
|
let tmp = self.c(a).clone();
|
|
*self.mut_c(a) = self.c(b).clone();
|
|
*self.mut_c(b) = tmp;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_r(&mut self, a: uint, b: uint) {
|
|
self.mut_c(0).swap(a, b);
|
|
self.mut_c(1).swap(a, b);
|
|
self.mut_c(2).swap(a, b);
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_cr(&mut self, (col_a, row_a): (uint, uint),
|
|
(col_b, row_b): (uint, uint)) {
|
|
let tmp = self.cr(col_a, row_a).clone();
|
|
*self.mut_cr(col_a, row_a) = self.cr(col_b, row_b).clone();
|
|
*self.mut_cr(col_b, row_b) = tmp;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transpose(&self) -> Mat3<T> {
|
|
Mat3::new(self.cr(0, 0).clone(), self.cr(1, 0).clone(), self.cr(2, 0).clone(),
|
|
self.cr(0, 1).clone(), self.cr(1, 1).clone(), self.cr(2, 1).clone(),
|
|
self.cr(0, 2).clone(), self.cr(1, 2).clone(), self.cr(2, 2).clone())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transpose_self(&mut self) {
|
|
self.swap_cr((0, 1), (1, 0));
|
|
self.swap_cr((0, 2), (2, 0));
|
|
self.swap_cr((1, 2), (2, 1));
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> ToMat4<T> for Mat3<T> {
|
|
#[inline]
|
|
pub fn to_mat4(&self) -> Mat4<T> {
|
|
Mat4::new(self.cr(0, 0).clone(), self.cr(0, 1).clone(), self.cr(0, 2).clone(), zero!(T),
|
|
self.cr(1, 0).clone(), self.cr(1, 1).clone(), self.cr(1, 2).clone(), zero!(T),
|
|
self.cr(2, 0).clone(), self.cr(2, 1).clone(), self.cr(2, 2).clone(), zero!(T),
|
|
zero!(T), zero!(T), zero!(T), one!(T))
|
|
}
|
|
}
|
|
|
|
impl<T:Num> Mat3<T> {
|
|
#[inline]
|
|
pub fn identity() -> Mat3<T> {
|
|
Mat3::from_cols(Vec3::unit_x(),
|
|
Vec3::unit_y(),
|
|
Vec3::unit_z())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn zero() -> Mat3<T> {
|
|
Mat3::from_cols(Vec3::zero(),
|
|
Vec3::zero(),
|
|
Vec3::zero())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> Mat3<T> {
|
|
#[inline]
|
|
pub fn from_value(value: T) -> Mat3<T> {
|
|
Mat3::new(value.clone(), zero!(T), zero!(T),
|
|
zero!(T), value.clone(), zero!(T),
|
|
zero!(T), zero!(T), value.clone())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> NumMat<T,Vec3<T>,[Vec3<T>,..3]> for Mat3<T> {
|
|
#[inline]
|
|
pub fn mul_s(&self, value: T) -> Mat3<T> {
|
|
Mat3::from_cols(self.c(0).mul_s(value.clone()),
|
|
self.c(1).mul_s(value.clone()),
|
|
self.c(2).mul_s(value.clone()))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
|
|
Vec3::new(self.r(0).dot(vec),
|
|
self.r(1).dot(vec),
|
|
self.r(2).dot(vec))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
|
Mat3::from_cols(self.c(0).add_v(other.c(0)),
|
|
self.c(1).add_v(other.c(1)),
|
|
self.c(2).add_v(other.c(2)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
|
Mat3::from_cols(self.c(0).sub_v(other.c(0)),
|
|
self.c(1).sub_v(other.c(1)),
|
|
self.c(2).sub_v(other.c(2)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
|
Mat3::new(self.r(0).dot(other.c(0)),self.r(1).dot(other.c(0)),self.r(2).dot(other.c(0)),
|
|
self.r(0).dot(other.c(1)),self.r(1).dot(other.c(1)),self.r(2).dot(other.c(1)),
|
|
self.r(0).dot(other.c(2)),self.r(1).dot(other.c(2)),self.r(2).dot(other.c(2)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_self_s(&mut self, value: T) {
|
|
self.mut_c(0).mul_self_s(value.clone());
|
|
self.mut_c(1).mul_self_s(value.clone());
|
|
self.mut_c(2).mul_self_s(value.clone());
|
|
}
|
|
|
|
#[inline]
|
|
pub fn add_self_m(&mut self, other: &Mat3<T>) {
|
|
self.mut_c(0).add_self_v(other.c(0));
|
|
self.mut_c(1).add_self_v(other.c(1));
|
|
self.mut_c(2).add_self_v(other.c(2));
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sub_self_m(&mut self, other: &Mat3<T>) {
|
|
self.mut_c(0).sub_self_v(other.c(0));
|
|
self.mut_c(1).sub_self_v(other.c(1));
|
|
self.mut_c(2).sub_self_v(other.c(2));
|
|
}
|
|
|
|
pub fn dot(&self, other: &Mat3<T>) -> T {
|
|
other.transpose().mul_m(self).trace()
|
|
}
|
|
|
|
pub fn determinant(&self) -> T {
|
|
*self.cr(0, 0) * (*self.cr(1, 1) * *self.cr(2, 2) - *self.cr(2, 1) * *self.cr(1, 2))
|
|
- *self.cr(1, 0) * (*self.cr(0, 1) * *self.cr(2, 2) - *self.cr(2, 1) * *self.cr(0, 2))
|
|
+ *self.cr(2, 0) * (*self.cr(0, 1) * *self.cr(1, 2) - *self.cr(1, 1) * *self.cr(0, 2))
|
|
}
|
|
|
|
pub fn trace(&self) -> T {
|
|
(*self.cr(0, 0)) + (*self.cr(1, 1)) + (*self.cr(2, 2))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_identity(&mut self) {
|
|
*self = Mat3::identity();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_zero(&mut self) {
|
|
*self = Mat3::zero();
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> Neg<Mat3<T>> for Mat3<T> {
|
|
#[inline]
|
|
pub fn neg(&self) -> Mat3<T> {
|
|
Mat3::from_cols(-*self.c(0),
|
|
-*self.c(1),
|
|
-*self.c(2))
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Float> Mat3<T> {
|
|
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Mat3<T> {
|
|
let dir_ = dir.normalize();
|
|
let side = dir_.cross(&up.normalize());
|
|
let up_ = side.cross(&dir_).normalize();
|
|
|
|
Mat3::from_axes(up_, side, dir_)
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Float> ToQuat<T> for Mat3<T> {
|
|
/// Convert the matrix to a quaternion
|
|
pub fn to_quat(&self) -> Quat<T> {
|
|
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
|
|
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
|
|
|
|
let mut s;
|
|
let w; let x; let y; let z;
|
|
let trace = self.trace();
|
|
|
|
// FIXME: We don't have any numeric conversions in std yet :P
|
|
let half = one!(T) / two!(T);
|
|
|
|
cond! (
|
|
(trace >= zero!(T)) {
|
|
s = (one!(T) + trace).sqrt();
|
|
w = half * s;
|
|
s = half / s;
|
|
x = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
|
|
y = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
|
|
z = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
|
|
}
|
|
((*self.cr(0, 0) > *self.cr(1, 1))
|
|
&& (*self.cr(0, 0) > *self.cr(2, 2))) {
|
|
s = (half + (*self.cr(0, 0) - *self.cr(1, 1) - *self.cr(2, 2))).sqrt();
|
|
w = half * s;
|
|
s = half / s;
|
|
x = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
|
|
y = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
|
|
z = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
|
|
}
|
|
(*self.cr(1, 1) > *self.cr(2, 2)) {
|
|
s = (half + (*self.cr(1, 1) - *self.cr(0, 0) - *self.cr(2, 2))).sqrt();
|
|
w = half * s;
|
|
s = half / s;
|
|
x = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
|
|
y = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
|
|
z = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
|
|
}
|
|
_ {
|
|
s = (half + (*self.cr(2, 2) - *self.cr(0, 0) - *self.cr(1, 1))).sqrt();
|
|
w = half * s;
|
|
s = half / s;
|
|
x = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
|
|
y = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
|
|
z = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
|
|
}
|
|
)
|
|
Quat::new(w, x, y, z)
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Float> FloatMat<T,Vec3<T>,[Vec3<T>,..3]> for Mat3<T> {
|
|
#[inline]
|
|
pub fn inverse(&self) -> Option<Mat3<T>> {
|
|
let d = self.determinant();
|
|
if d.approx_eq(&zero!(T)) {
|
|
None
|
|
} else {
|
|
Some(Mat3::from_cols(self.c(1).cross(self.c(2)).div_s(d.clone()),
|
|
self.c(2).cross(self.c(0)).div_s(d.clone()),
|
|
self.c(0).cross(self.c(1)).div_s(d.clone())).transpose())
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn invert_self(&mut self) {
|
|
*self = self.inverse().expect("Couldn't invert the matrix!");
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_identity(&self) -> bool {
|
|
self.approx_eq(&Mat3::identity())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_diagonal(&self) -> bool {
|
|
self.cr(0, 1).approx_eq(&zero!(T)) &&
|
|
self.cr(0, 2).approx_eq(&zero!(T)) &&
|
|
|
|
self.cr(1, 0).approx_eq(&zero!(T)) &&
|
|
self.cr(1, 2).approx_eq(&zero!(T)) &&
|
|
|
|
self.cr(2, 0).approx_eq(&zero!(T)) &&
|
|
self.cr(2, 1).approx_eq(&zero!(T))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_rotated(&self) -> bool {
|
|
!self.approx_eq(&Mat3::identity())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_symmetric(&self) -> bool {
|
|
self.cr(0, 1).approx_eq(self.cr(1, 0)) &&
|
|
self.cr(0, 2).approx_eq(self.cr(2, 0)) &&
|
|
|
|
self.cr(1, 0).approx_eq(self.cr(0, 1)) &&
|
|
self.cr(1, 2).approx_eq(self.cr(2, 1)) &&
|
|
|
|
self.cr(2, 0).approx_eq(self.cr(0, 2)) &&
|
|
self.cr(2, 1).approx_eq(self.cr(1, 2))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_invertible(&self) -> bool {
|
|
!self.determinant().approx_eq(&zero!(T))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod mat3_tests{
|
|
use math::mat::*;
|
|
use math::vec::*;
|
|
|
|
static A: Mat3<float> = Mat3 { x: Vec3 { x: 1.0, y: 4.0, z: 7.0 },
|
|
y: Vec3 { x: 2.0, y: 5.0, z: 8.0 },
|
|
z: Vec3 { x: 3.0, y: 6.0, z: 9.0 } };
|
|
static B: Mat3<float> = Mat3 { x: Vec3 { x: 2.0, y: 5.0, z: 8.0 },
|
|
y: Vec3 { x: 3.0, y: 6.0, z: 9.0 },
|
|
z: Vec3 { x: 4.0, y: 7.0, z: 10.0 } };
|
|
static C: Mat3<float> = Mat3 { x: Vec3 { x: 2.0, y: 4.0, z: 6.0 },
|
|
y: Vec3 { x: 0.0, y: 2.0, z: 4.0 },
|
|
z: Vec3 { x: 0.0, y: 0.0, z: 1.0 } };
|
|
static D: Mat3<float> = Mat3 { x: Vec3 { x: 3.0, y: 2.0, z: 1.0 },
|
|
y: Vec3 { x: 2.0, y: 3.0, z: 2.0 },
|
|
z: Vec3 { x: 1.0, y: 2.0, z: 3.0 } };
|
|
|
|
static V: Vec3<float> = Vec3 { x: 1.0, y: 2.0, z: 3.0 };
|
|
static F: float = 0.5;
|
|
|
|
#[test]
|
|
fn test_swap_c() {
|
|
let mut mut_a0 = A;
|
|
mut_a0.swap_c(0, 2);
|
|
assert_eq!(mut_a0.c(0), A.c(2));
|
|
assert_eq!(mut_a0.c(2), A.c(0));
|
|
|
|
let mut mut_a1 = A;
|
|
mut_a1.swap_c(1, 2);
|
|
assert_eq!(mut_a1.c(1), A.c(2));
|
|
assert_eq!(mut_a1.c(2), A.c(1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_r() {
|
|
let mut mut_a0 = A;
|
|
mut_a0.swap_r(0, 2);
|
|
assert_eq!(mut_a0.r(0), A.r(2));
|
|
assert_eq!(mut_a0.r(2), A.r(0));
|
|
|
|
let mut mut_a1 = A;
|
|
mut_a1.swap_r(1, 2);
|
|
assert_eq!(mut_a1.r(1), A.r(2));
|
|
assert_eq!(mut_a1.r(2), A.r(1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_identity() {
|
|
assert_eq!(Mat3::identity::<float>(),
|
|
Mat3::new::<float>(1.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0,
|
|
0.0, 0.0, 1.0));
|
|
let mut mut_a = A;
|
|
mut_a.to_identity();
|
|
assert!(mut_a.is_identity());
|
|
}
|
|
|
|
#[test]
|
|
fn test_zero() {
|
|
assert_eq!(Mat3::zero::<float>(),
|
|
Mat3::new::<float>(0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0));
|
|
let mut mut_a = A;
|
|
mut_a.to_zero();
|
|
assert_eq!(mut_a, Mat3::zero::<float>());
|
|
}
|
|
|
|
#[test]
|
|
fn test_determinant() {
|
|
// assert_eq!(A.determinant(), 0.0);
|
|
// TODO
|
|
}
|
|
|
|
#[test]
|
|
fn test_trace() {
|
|
assert_eq!(A.trace(), 15.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_neg() {
|
|
assert_eq!(A.neg(),
|
|
Mat3::new::<float>(-1.0, -4.0, -7.0,
|
|
-2.0, -5.0, -8.0,
|
|
-3.0, -6.0, -9.0));
|
|
assert_eq!(-A, A.neg());
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_s() {
|
|
assert_eq!(A.mul_s(F),
|
|
Mat3::new::<float>(0.5, 2.0, 3.5,
|
|
1.0, 2.5, 4.0,
|
|
1.5, 3.0, 4.5));
|
|
let mut mut_a = A;
|
|
mut_a.mul_self_s(F);
|
|
assert_eq!(mut_a, A.mul_s(F));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_v() {
|
|
assert_eq!(A.mul_v(&V),
|
|
Vec3::new::<float>(14.0, 32.0, 50.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_add_m() {
|
|
assert_eq!(A.add_m(&B),
|
|
Mat3::new::<float>(3.0, 9.0, 15.0,
|
|
5.0, 11.0, 17.0,
|
|
7.0, 13.0, 19.0));
|
|
let mut mut_a = A;
|
|
mut_a.add_self_m(&B);
|
|
assert_eq!(mut_a, A.add_m(&B));
|
|
}
|
|
|
|
#[test]
|
|
fn test_sub_m() {
|
|
assert_eq!(A.sub_m(&B),
|
|
Mat3::new::<float>(-1.0, -1.0, -1.0,
|
|
-1.0, -1.0, -1.0,
|
|
-1.0, -1.0, -1.0));
|
|
let mut mut_a = A;
|
|
mut_a.sub_self_m(&B);
|
|
assert_eq!(mut_a, A.sub_m(&B));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_m() {
|
|
assert_eq!(A.mul_m(&B),
|
|
Mat3::new::<float>(36.0, 81.0, 126.0,
|
|
42.0, 96.0, 150.0,
|
|
48.0, 111.0, 174.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_dot() {
|
|
assert_eq!(A.dot(&B), 330.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose() {
|
|
assert_eq!(A.transpose(),
|
|
Mat3::new::<float>(1.0, 2.0, 3.0,
|
|
4.0, 5.0, 6.0,
|
|
7.0, 8.0, 9.0));
|
|
let mut mut_a = A;
|
|
mut_a.transpose_self();
|
|
assert_eq!(mut_a, A.transpose());
|
|
}
|
|
|
|
#[test]
|
|
fn test_inverse() {
|
|
assert!(Mat3::identity::<float>().inverse().unwrap().is_identity());
|
|
|
|
assert_eq!(A.inverse(), None);
|
|
|
|
assert_eq!(C.inverse().unwrap(),
|
|
Mat3::new::<float>(0.5, -1.0, 1.0,
|
|
0.0, 0.5, -2.0,
|
|
0.0, 0.0, 1.0));
|
|
let mut mut_c = C;
|
|
mut_c.invert_self();
|
|
assert_eq!(mut_c, C.inverse().unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_predicates() {
|
|
assert!(Mat3::identity::<float>().is_identity());
|
|
assert!(Mat3::identity::<float>().is_symmetric());
|
|
assert!(Mat3::identity::<float>().is_diagonal());
|
|
assert!(!Mat3::identity::<float>().is_rotated());
|
|
assert!(Mat3::identity::<float>().is_invertible());
|
|
|
|
assert!(!A.is_identity());
|
|
assert!(!A.is_symmetric());
|
|
assert!(!A.is_diagonal());
|
|
assert!(A.is_rotated());
|
|
assert!(!A.is_invertible());
|
|
|
|
assert!(!D.is_identity());
|
|
assert!(D.is_symmetric());
|
|
assert!(!D.is_diagonal());
|
|
assert!(D.is_rotated());
|
|
assert!(D.is_invertible());
|
|
|
|
assert!(Mat3::from_value::<float>(6.0).is_diagonal());
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_mat4() {
|
|
assert_eq!(A.to_mat4(),
|
|
Mat4::new::<float>(1.0, 4.0, 7.0, 0.0,
|
|
2.0, 5.0, 8.0, 0.0,
|
|
3.0, 6.0, 9.0, 0.0,
|
|
0.0, 0.0, 0.0, 1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_approx() {
|
|
assert!(!Mat3::new::<float>(0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001)
|
|
.approx_eq(&Mat3::zero::<float>()));
|
|
assert!(Mat3::new::<float>(0.0000001, 0.0000001, 0.0000001,
|
|
0.0000001, 0.0000001, 0.0000001,
|
|
0.0000001, 0.0000001, 0.0000001)
|
|
.approx_eq(&Mat3::zero::<float>()));
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
pub struct Mat4<T> {
|
|
x: Vec4<T>,
|
|
y: Vec4<T>,
|
|
z: Vec4<T>,
|
|
w: Vec4<T>,
|
|
}
|
|
|
|
// GLSL-style type aliases
|
|
pub type mat4 = Mat4<f32>;
|
|
pub type dmat4 = Mat4<f64>;
|
|
|
|
// Rust-style type aliases
|
|
pub type Mat4f = Mat4<float>;
|
|
pub type Mat4f32 = Mat4<f32>;
|
|
pub type Mat4f64 = Mat4<f64>;
|
|
|
|
impl_dimensioned!(Mat4, Vec4<T>, 4)
|
|
impl_swap_components!(Mat4)
|
|
impl_approx!(Mat4 { x, y, z, w })
|
|
|
|
pub trait ToMat4<T> {
|
|
pub fn to_mat4(&self) -> Mat4<T>;
|
|
}
|
|
|
|
impl<T> Mat4<T> {
|
|
#[inline]
|
|
pub fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
|
|
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
|
|
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
|
|
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
|
|
Mat4::from_cols(Vec4::new(c0r0, c0r1, c0r2, c0r3),
|
|
Vec4::new(c1r0, c1r1, c1r2, c1r3),
|
|
Vec4::new(c2r0, c2r1, c2r2, c2r3),
|
|
Vec4::new(c3r0, c3r1, c3r2, c3r3))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_cols(c0: Vec4<T>,
|
|
c1: Vec4<T>,
|
|
c2: Vec4<T>,
|
|
c3: Vec4<T>) -> Mat4<T> {
|
|
Mat4 { x: c0, y: c1, z: c2, w: c3 }
|
|
}
|
|
}
|
|
|
|
impl<T:Clone> Mat<T,Vec4<T>,[Vec4<T>,..4]> for Mat4<T> {
|
|
#[inline]
|
|
pub fn c<'a>(&'a self, c: uint) -> &'a Vec4<T> {
|
|
self.i(c)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn r(&self, r: uint) -> Vec4<T> {
|
|
Vec4::new(self.i(0).i(r).clone(),
|
|
self.i(1).i(r).clone(),
|
|
self.i(2).i(r).clone(),
|
|
self.i(3).i(r).clone())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T {
|
|
self.i(c).i(r)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec4<T> {
|
|
self.mut_i(c)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T {
|
|
self.mut_i(c).mut_i(r)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_c(&mut self, a: uint, b: uint) {
|
|
let tmp = self.c(a).clone();
|
|
*self.mut_c(a) = self.c(b).clone();
|
|
*self.mut_c(b) = tmp;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_r(&mut self, a: uint, b: uint) {
|
|
self.mut_c(0).swap(a, b);
|
|
self.mut_c(1).swap(a, b);
|
|
self.mut_c(2).swap(a, b);
|
|
self.mut_c(3).swap(a, b);
|
|
}
|
|
|
|
#[inline]
|
|
pub fn swap_cr(&mut self, (col_a, row_a): (uint, uint),
|
|
(col_b, row_b): (uint, uint)) {
|
|
let tmp = self.cr(col_a, row_a).clone();
|
|
*self.mut_cr(col_a, row_a) = self.cr(col_b, row_b).clone();
|
|
*self.mut_cr(col_b, row_b) = tmp;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transpose(&self) -> Mat4<T> {
|
|
Mat4::new(self.cr(0, 0).clone(),self.cr(1, 0).clone(),self.cr(2, 0).clone(),self.cr(3, 0).clone(),
|
|
self.cr(0, 1).clone(),self.cr(1, 1).clone(),self.cr(2, 1).clone(),self.cr(3, 1).clone(),
|
|
self.cr(0, 2).clone(),self.cr(1, 2).clone(),self.cr(2, 2).clone(),self.cr(3, 2).clone(),
|
|
self.cr(0, 3).clone(),self.cr(1, 3).clone(),self.cr(2, 3).clone(),self.cr(3, 3).clone())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transpose_self(&mut self) {
|
|
self.swap_cr((0, 1), (1, 0));
|
|
self.swap_cr((0, 2), (2, 0));
|
|
self.swap_cr((0, 3), (3, 0));
|
|
self.swap_cr((1, 2), (2, 1));
|
|
self.swap_cr((1, 3), (3, 1));
|
|
self.swap_cr((2, 3), (3, 2));
|
|
}
|
|
}
|
|
|
|
impl<T:Num> Mat4<T> {
|
|
#[inline]
|
|
pub fn identity() -> Mat4<T> {
|
|
Mat4::from_cols(Vec4::unit_x(),
|
|
Vec4::unit_y(),
|
|
Vec4::unit_z(),
|
|
Vec4::unit_w())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn zero() -> Mat4<T> {
|
|
Mat4::from_cols(Vec4::zero(),
|
|
Vec4::zero(),
|
|
Vec4::zero(),
|
|
Vec4::zero())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> Mat4<T> {
|
|
#[inline]
|
|
pub fn from_value(value: T) -> Mat4<T> {
|
|
Mat4::new(value.clone(), zero!(T), zero!(T), zero!(T),
|
|
zero!(T), value.clone(), zero!(T), zero!(T),
|
|
zero!(T), zero!(T), value.clone(), zero!(T),
|
|
zero!(T), zero!(T), zero!(T), value.clone())
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> NumMat<T,Vec4<T>,[Vec4<T>,..4]> for Mat4<T> {
|
|
#[inline]
|
|
pub fn mul_s(&self, value: T) -> Mat4<T> {
|
|
Mat4::from_cols(self.c(0).mul_s(value.clone()),
|
|
self.c(1).mul_s(value.clone()),
|
|
self.c(2).mul_s(value.clone()),
|
|
self.c(3).mul_s(value.clone()))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
|
|
Vec4::new(self.r(0).dot(vec),
|
|
self.r(1).dot(vec),
|
|
self.r(2).dot(vec),
|
|
self.r(3).dot(vec))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
|
|
Mat4::from_cols(self.c(0).add_v(other.c(0)),
|
|
self.c(1).add_v(other.c(1)),
|
|
self.c(2).add_v(other.c(2)),
|
|
self.c(3).add_v(other.c(3)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
|
|
Mat4::from_cols(self.c(0).sub_v(other.c(0)),
|
|
self.c(1).sub_v(other.c(1)),
|
|
self.c(2).sub_v(other.c(2)),
|
|
self.c(3).sub_v(other.c(3)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
|
|
Mat4::new(self.r(0).dot(other.c(0)), self.r(1).dot(other.c(0)), self.r(2).dot(other.c(0)), self.r(3).dot(other.c(0)),
|
|
self.r(0).dot(other.c(1)), self.r(1).dot(other.c(1)), self.r(2).dot(other.c(1)), self.r(3).dot(other.c(1)),
|
|
self.r(0).dot(other.c(2)), self.r(1).dot(other.c(2)), self.r(2).dot(other.c(2)), self.r(3).dot(other.c(2)),
|
|
self.r(0).dot(other.c(3)), self.r(1).dot(other.c(3)), self.r(2).dot(other.c(3)), self.r(3).dot(other.c(3)))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mul_self_s(&mut self, value: T) {
|
|
self.mut_c(0).mul_self_s(value.clone());
|
|
self.mut_c(1).mul_self_s(value.clone());
|
|
self.mut_c(2).mul_self_s(value.clone());
|
|
self.mut_c(3).mul_self_s(value.clone());
|
|
}
|
|
|
|
#[inline]
|
|
pub fn add_self_m(&mut self, other: &Mat4<T>) {
|
|
self.mut_c(0).add_self_v(other.c(0));
|
|
self.mut_c(1).add_self_v(other.c(1));
|
|
self.mut_c(2).add_self_v(other.c(2));
|
|
self.mut_c(3).add_self_v(other.c(3));
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sub_self_m(&mut self, other: &Mat4<T>) {
|
|
self.mut_c(0).sub_self_v(other.c(0));
|
|
self.mut_c(1).sub_self_v(other.c(1));
|
|
self.mut_c(2).sub_self_v(other.c(2));
|
|
self.mut_c(3).sub_self_v(other.c(3));
|
|
}
|
|
|
|
pub fn dot(&self, other: &Mat4<T>) -> T {
|
|
other.transpose().mul_m(self).trace()
|
|
}
|
|
|
|
pub fn determinant(&self) -> T {
|
|
let m0 = Mat3::new(self.cr(1, 1).clone(), self.cr(2, 1).clone(), self.cr(3, 1).clone(),
|
|
self.cr(1, 2).clone(), self.cr(2, 2).clone(), self.cr(3, 2).clone(),
|
|
self.cr(1, 3).clone(), self.cr(2, 3).clone(), self.cr(3, 3).clone());
|
|
let m1 = Mat3::new(self.cr(0, 1).clone(), self.cr(2, 1).clone(), self.cr(3, 1).clone(),
|
|
self.cr(0, 2).clone(), self.cr(2, 2).clone(), self.cr(3, 2).clone(),
|
|
self.cr(0, 3).clone(), self.cr(2, 3).clone(), self.cr(3, 3).clone());
|
|
let m2 = Mat3::new(self.cr(0, 1).clone(), self.cr(1, 1).clone(), self.cr(3, 1).clone(),
|
|
self.cr(0, 2).clone(), self.cr(1, 2).clone(), self.cr(3, 2).clone(),
|
|
self.cr(0, 3).clone(), self.cr(1, 3).clone(), self.cr(3, 3).clone());
|
|
let m3 = Mat3::new(self.cr(0, 1).clone(), self.cr(1, 1).clone(), self.cr(2, 1).clone(),
|
|
self.cr(0, 2).clone(), self.cr(1, 2).clone(), self.cr(2, 2).clone(),
|
|
self.cr(0, 3).clone(), self.cr(1, 3).clone(), self.cr(2, 3).clone());
|
|
|
|
self.cr(0, 0) * m0.determinant() -
|
|
self.cr(1, 0) * m1.determinant() +
|
|
self.cr(2, 0) * m2.determinant() -
|
|
self.cr(3, 0) * m3.determinant()
|
|
}
|
|
|
|
pub fn trace(&self) -> T {
|
|
*self.cr(0, 0) + *self.cr(1, 1) + *self.cr(2, 2) + *self.cr(3, 3)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_identity(&mut self) {
|
|
*self = Mat4::identity();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_zero(&mut self) {
|
|
*self = Mat4::zero();
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Num> Neg<Mat4<T>> for Mat4<T> {
|
|
#[inline]
|
|
pub fn neg(&self) -> Mat4<T> {
|
|
Mat4::from_cols(-*self.c(0),
|
|
-*self.c(1),
|
|
-*self.c(2),
|
|
-*self.c(3))
|
|
}
|
|
}
|
|
|
|
impl<T:Clone + Float> FloatMat<T,Vec4<T>,[Vec4<T>,..4]> for Mat4<T> {
|
|
#[inline]
|
|
pub fn inverse(&self) -> Option<Mat4<T>> {
|
|
use std::uint;
|
|
|
|
if self.is_invertible() {
|
|
// Gauss Jordan Elimination with partial pivoting
|
|
// So take this matrix, A, augmented with the identity
|
|
// and essentially reduce [A|I]
|
|
|
|
let mut A = self.clone();
|
|
let mut I = Mat4::identity::<T>();
|
|
|
|
for uint::range(0, 4) |j| {
|
|
// Find largest element in col j
|
|
let mut i1 = j;
|
|
for uint::range(j + 1, 4) |i| {
|
|
if A.cr(j, i).abs() > A.cr(j, i1).abs() {
|
|
i1 = i;
|
|
}
|
|
}
|
|
|
|
// SwapComponents columns i1 and j in A and I to
|
|
// put pivot on diagonal
|
|
A.swap_c(i1, j);
|
|
I.swap_c(i1, j);
|
|
|
|
// Scale col j to have a unit diagonal
|
|
let ajj = A.cr(j, j).clone();
|
|
I.mut_c(j).div_self_s(ajj.clone());
|
|
A.mut_c(j).div_self_s(ajj.clone());
|
|
|
|
// Eliminate off-diagonal elems in col j of A,
|
|
// doing identical ops to I
|
|
for uint::range(0, 4) |i| {
|
|
if i != j {
|
|
let ij_mul_aij = I.c(j).mul_s(A.cr(i, j).clone());
|
|
let aj_mul_aij = A.c(j).mul_s(A.cr(i, j).clone());
|
|
I.mut_c(i).sub_self_v(&ij_mul_aij);
|
|
A.mut_c(i).sub_self_v(&aj_mul_aij);
|
|
}
|
|
}
|
|
}
|
|
Some(I)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn invert_self(&mut self) {
|
|
*self = self.inverse().expect("Couldn't invert the matrix!");
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_identity(&self) -> bool {
|
|
self.approx_eq(&Mat4::identity())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_diagonal(&self) -> bool {
|
|
self.cr(0, 1).approx_eq(&zero!(T)) &&
|
|
self.cr(0, 2).approx_eq(&zero!(T)) &&
|
|
self.cr(0, 3).approx_eq(&zero!(T)) &&
|
|
|
|
self.cr(1, 0).approx_eq(&zero!(T)) &&
|
|
self.cr(1, 2).approx_eq(&zero!(T)) &&
|
|
self.cr(1, 3).approx_eq(&zero!(T)) &&
|
|
|
|
self.cr(2, 0).approx_eq(&zero!(T)) &&
|
|
self.cr(2, 1).approx_eq(&zero!(T)) &&
|
|
self.cr(2, 3).approx_eq(&zero!(T)) &&
|
|
|
|
self.cr(3, 0).approx_eq(&zero!(T)) &&
|
|
self.cr(3, 1).approx_eq(&zero!(T)) &&
|
|
self.cr(3, 2).approx_eq(&zero!(T))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_rotated(&self) -> bool {
|
|
!self.approx_eq(&Mat4::identity())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_symmetric(&self) -> bool {
|
|
self.cr(0, 1).approx_eq(self.cr(1, 0)) &&
|
|
self.cr(0, 2).approx_eq(self.cr(2, 0)) &&
|
|
self.cr(0, 3).approx_eq(self.cr(3, 0)) &&
|
|
|
|
self.cr(1, 0).approx_eq(self.cr(0, 1)) &&
|
|
self.cr(1, 2).approx_eq(self.cr(2, 1)) &&
|
|
self.cr(1, 3).approx_eq(self.cr(3, 1)) &&
|
|
|
|
self.cr(2, 0).approx_eq(self.cr(0, 2)) &&
|
|
self.cr(2, 1).approx_eq(self.cr(1, 2)) &&
|
|
self.cr(2, 3).approx_eq(self.cr(3, 2)) &&
|
|
|
|
self.cr(3, 0).approx_eq(self.cr(0, 3)) &&
|
|
self.cr(3, 1).approx_eq(self.cr(1, 3)) &&
|
|
self.cr(3, 2).approx_eq(self.cr(2, 3))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_invertible(&self) -> bool {
|
|
!self.determinant().approx_eq(&zero!(T))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod mat4_tests {
|
|
use math::mat::*;
|
|
use math::vec::*;
|
|
|
|
static A: Mat4<float> = Mat4 { x: Vec4 { x: 1.0, y: 5.0, z: 9.0, w: 13.0 },
|
|
y: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 },
|
|
z: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 },
|
|
w: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 } };
|
|
static B: Mat4<float> = Mat4 { x: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 },
|
|
y: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 },
|
|
z: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 },
|
|
w: Vec4 { x: 5.0, y: 9.0, z: 13.0, w: 17.0 } };
|
|
static C: Mat4<float> = Mat4 { x: Vec4 { x: 3.0, y: 2.0, z: 1.0, w: 1.0 },
|
|
y: Vec4 { x: 2.0, y: 3.0, z: 2.0, w: 2.0 },
|
|
z: Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 3.0 },
|
|
w: Vec4 { x: 0.0, y: 1.0, z: 1.0, w: 0.0 } };
|
|
static D: Mat4<float> = Mat4 { x: Vec4 { x: 4.0, y: 3.0, z: 2.0, w: 1.0 },
|
|
y: Vec4 { x: 3.0, y: 4.0, z: 3.0, w: 2.0 },
|
|
z: Vec4 { x: 2.0, y: 3.0, z: 4.0, w: 3.0 },
|
|
w: Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 } };
|
|
|
|
static V: Vec4<float> = Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 };
|
|
static F: float = 0.5;
|
|
|
|
#[test]
|
|
fn test_swap_c() {
|
|
let mut mut_a0 = A;
|
|
mut_a0.swap_c(0, 2);
|
|
assert_eq!(mut_a0.c(0), A.c(2));
|
|
assert_eq!(mut_a0.c(2), A.c(0));
|
|
|
|
let mut mut_a1 = A;
|
|
mut_a1.swap_c(1, 2);
|
|
assert_eq!(mut_a1.c(1), A.c(2));
|
|
assert_eq!(mut_a1.c(2), A.c(1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_r() {
|
|
let mut mut_a0 = A;
|
|
mut_a0.swap_r(0, 2);
|
|
assert_eq!(mut_a0.r(0), A.r(2));
|
|
assert_eq!(mut_a0.r(2), A.r(0));
|
|
|
|
let mut mut_a1 = A;
|
|
mut_a1.swap_r(1, 2);
|
|
assert_eq!(mut_a1.r(1), A.r(2));
|
|
assert_eq!(mut_a1.r(2), A.r(1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_identity() {
|
|
assert_eq!(Mat4::identity::<float>(),
|
|
Mat4::new::<float>(1.0, 0.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0, 0.0,
|
|
0.0, 0.0, 0.0, 1.0));
|
|
let mut mut_a = A;
|
|
mut_a.to_identity();
|
|
assert!(mut_a.is_identity());
|
|
}
|
|
|
|
#[test]
|
|
fn test_zero() {
|
|
assert_eq!(Mat4::zero::<float>(),
|
|
Mat4::new::<float>(0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0));
|
|
let mut mut_a = A;
|
|
mut_a.to_zero();
|
|
assert_eq!(mut_a, Mat4::zero::<float>());
|
|
}
|
|
#[test]
|
|
fn test_determinant() {
|
|
assert_eq!(A.determinant(), 0.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_trace() {
|
|
assert_eq!(A.trace(), 34.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_neg() {
|
|
assert_eq!(A.neg(),
|
|
Mat4::new::<float>(-1.0, -5.0, -9.0, -13.0,
|
|
-2.0, -6.0, -10.0, -14.0,
|
|
-3.0, -7.0, -11.0, -15.0,
|
|
-4.0, -8.0, -12.0, -16.0));
|
|
assert_eq!(-A, A.neg());
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_s() {
|
|
assert_eq!(A.mul_s(F),
|
|
Mat4::new::<float>(0.5, 2.5, 4.5, 6.5,
|
|
1.0, 3.0, 5.0, 7.0,
|
|
1.5, 3.5, 5.5, 7.5,
|
|
2.0, 4.0, 6.0, 8.0));
|
|
let mut mut_a = A;
|
|
mut_a.mul_self_s(F);
|
|
assert_eq!(mut_a, A.mul_s(F));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_v() {
|
|
assert_eq!(A.mul_v(&V),
|
|
Vec4::new::<float>(30.0, 70.0, 110.0, 150.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_add_m() {
|
|
assert_eq!(A.add_m(&B),
|
|
Mat4::new::<float>(3.0, 11.0, 19.0, 27.0,
|
|
5.0, 13.0, 21.0, 29.0,
|
|
7.0, 15.0, 23.0, 31.0,
|
|
9.0, 17.0, 25.0, 33.0));
|
|
let mut mut_a = A;
|
|
mut_a.add_self_m(&B);
|
|
assert_eq!(mut_a, A.add_m(&B));
|
|
}
|
|
|
|
#[test]
|
|
fn test_sub_m() {
|
|
assert_eq!(A.sub_m(&B),
|
|
Mat4::new::<float>(-1.0, -1.0, -1.0, -1.0,
|
|
-1.0, -1.0, -1.0, -1.0,
|
|
-1.0, -1.0, -1.0, -1.0,
|
|
-1.0, -1.0, -1.0, -1.0));
|
|
let mut mut_a = A;
|
|
mut_a.sub_self_m(&B);
|
|
assert_eq!(mut_a, A.sub_m(&B));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul_m() {
|
|
assert_eq!(A.mul_m(&B),
|
|
Mat4::new::<float>(100.0, 228.0, 356.0, 484.0,
|
|
110.0, 254.0, 398.0, 542.0,
|
|
120.0, 280.0, 440.0, 600.0,
|
|
130.0, 306.0, 482.0, 658.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_dot() {
|
|
assert_eq!(A.dot(&B), 1632.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose() {
|
|
assert_eq!(A.transpose(),
|
|
Mat4::new::<float>( 1.0, 2.0, 3.0, 4.0,
|
|
5.0, 6.0, 7.0, 8.0,
|
|
9.0, 10.0, 11.0, 12.0,
|
|
13.0, 14.0, 15.0, 16.0));
|
|
let mut mut_a = A;
|
|
mut_a.transpose_self();
|
|
assert_eq!(mut_a, A.transpose());
|
|
}
|
|
|
|
#[test]
|
|
fn test_inverse() {
|
|
assert!(Mat4::identity::<float>().inverse().unwrap().is_identity());
|
|
|
|
assert_approx_eq!(C.inverse().unwrap(),
|
|
Mat4::new::<float>( 5.0, -4.0, 1.0, 0.0,
|
|
-4.0, 8.0, -4.0, 0.0,
|
|
4.0, -8.0, 4.0, 8.0,
|
|
-3.0, 4.0, 1.0, -8.0).mul_s(0.125));
|
|
let mut mut_c = C;
|
|
mut_c.invert_self();
|
|
assert_eq!(mut_c, C.inverse().unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_predicates() {
|
|
assert!(Mat3::identity::<float>().is_identity());
|
|
assert!(Mat3::identity::<float>().is_symmetric());
|
|
assert!(Mat3::identity::<float>().is_diagonal());
|
|
assert!(!Mat3::identity::<float>().is_rotated());
|
|
assert!(Mat3::identity::<float>().is_invertible());
|
|
|
|
assert!(!A.is_identity());
|
|
assert!(!A.is_symmetric());
|
|
assert!(!A.is_diagonal());
|
|
assert!(A.is_rotated());
|
|
assert!(!A.is_invertible());
|
|
|
|
assert!(!D.is_identity());
|
|
assert!(D.is_symmetric());
|
|
assert!(!D.is_diagonal());
|
|
assert!(D.is_rotated());
|
|
assert!(D.is_invertible());
|
|
|
|
assert!(Mat3::from_value::<float>(6.0).is_diagonal());
|
|
}
|
|
|
|
#[test]
|
|
fn test_approx() {
|
|
assert!(!Mat4::new::<float>(0.000001, 0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001, 0.000001)
|
|
.approx_eq(&Mat4::zero::<float>()));
|
|
assert!(Mat4::new::<float>(0.0000001, 0.0000001, 0.0000001, 0.0000001,
|
|
0.0000001, 0.0000001, 0.0000001, 0.0000001,
|
|
0.0000001, 0.0000001, 0.0000001, 0.0000001,
|
|
0.0000001, 0.0000001, 0.0000001, 0.0000001)
|
|
.approx_eq(&Mat4::zero::<float>()));
|
|
}
|
|
}
|