cgmath/src/aabb.rs

220 lines
7.3 KiB
Rust

// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Axis-aligned bounding boxes
//!
//! An AABB is a geometric object which encompasses a set of points and is not
//! rotated. It is either a rectangle or a rectangular prism (depending on the
//! dimension) where the slope of every line is either 0 or undefined. These
//! are useful for very cheap collision detection.
use point::{Point, Point2, Point3};
use vector::{Vector, Vector2, Vector3};
use ray::{Ray2};
use intersect::Intersect;
use num::{BaseNum, BaseFloat};
use std::fmt;
use std::num::{zero, one, Float};
pub trait Aabb<S: BaseNum, V: Vector<S>, P: Point<S, V>> {
/// Create a new AABB using two points as opposing corners.
fn new(p1: P, p2: P) -> Self;
/// Return a shared reference to the point nearest to (-inf, -inf).
fn min<'a>(&'a self) -> &'a P;
/// Return a shared reference to the point nearest to (inf, inf).
fn max<'a>(&'a self) -> &'a P;
/// Return the dimensions of this AABB.
#[inline]
fn dim(&self) -> V { self.max().sub_p(self.min()) }
/// Return the volume this AABB encloses.
#[inline]
fn volume(&self) -> S { self.dim().comp_mul() }
/// Return the center point of this AABB.
#[inline]
fn center(&self) -> P {
let two = one::<S>() + one::<S>();
self.min().add_v(&self.dim().div_s(two))
}
/// Tests whether a point is cointained in the box, inclusive for min corner
/// and exclusive for the max corner.
#[inline]
fn contains(&self, p: &P) -> bool;
/// Returns a new AABB that is grown to include the given point.
fn grow(&self, p: &P) -> Self {
let min = self.min().min(p);
let max = self.max().max(p);
Aabb::new(min, max)
}
/// Add a vector to every point in the AABB, returning a new AABB.
fn add_v(&self, v: &V) -> Self {
Aabb::new(self.min().add_v(v), self.max().add_v(v))
}
/// Multiply every point in the AABB by a scalar, returning a new AABB.
fn mul_s(&self, s: S) -> Self {
Aabb::new(self.min().mul_s(s.clone()), self.max().mul_s(s.clone()))
}
/// Multiply every point in the AABB by a vector, returning a new AABB.
fn mul_v(&self, v: &V) -> Self {
let min : P = Point::from_vec(&self.min().to_vec().mul_v(v));
let max : P = Point::from_vec(&self.max().to_vec().mul_v(v));
Aabb::new(min, max)
}
}
/// A two-dimensional AABB, aka a rectangle.
#[deriving(Clone, PartialEq, Encodable, Decodable)]
pub struct Aabb2<S> {
pub min: Point2<S>,
pub max: Point2<S>,
}
impl<S: BaseNum> Aabb2<S> {
/// Construct a new axis-aligned bounding box from two points.
#[inline]
pub fn new(p1: Point2<S>, p2: Point2<S>) -> Aabb2<S> {
Aabb2 {
min: Point2::new(p1.x.partial_min(p2.x),
p1.y.partial_min(p2.y)),
max: Point2::new(p1.x.partial_max(p2.x),
p1.y.partial_max(p2.y)),
}
}
}
impl<S: BaseNum> Aabb<S, Vector2<S>, Point2<S>> for Aabb2<S> {
#[inline]
fn new(p1: Point2<S>, p2: Point2<S>) -> Aabb2<S> { Aabb2::new(p1, p2) }
#[inline]
fn min<'a>(&'a self) -> &'a Point2<S> { &self.min }
#[inline]
fn max<'a>(&'a self) -> &'a Point2<S> { &self.max }
#[inline]
fn contains(&self, p: &Point2<S>) -> bool {
let v_min = p.sub_p(self.min());
let v_max = self.max().sub_p(p);
v_min.x >= zero() && v_min.y >= zero() &&
v_max.x > zero() && v_max.y > zero()
}
}
impl<S: BaseNum> fmt::Show for Aabb2<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[{} - {}]", self.min, self.max)
}
}
/// A three-dimensional AABB, aka a rectangular prism.
#[deriving(Clone, PartialEq, Encodable, Decodable)]
pub struct Aabb3<S> {
pub min: Point3<S>,
pub max: Point3<S>,
}
impl<S: BaseNum> Aabb3<S> {
/// Construct a new axis-aligned bounding box from two points.
#[inline]
pub fn new(p1: Point3<S>, p2: Point3<S>) -> Aabb3<S> {
Aabb3 {
min: Point3::new(p1.x.partial_min(p2.x),
p1.y.partial_min(p2.y),
p1.z.partial_min(p2.z)),
max: Point3::new(p1.x.partial_max(p2.x),
p1.y.partial_max(p2.y),
p1.z.partial_max(p2.z)),
}
}
}
impl<S: BaseNum> Aabb<S, Vector3<S>, Point3<S>> for Aabb3<S> {
#[inline]
fn new(p1: Point3<S>, p2: Point3<S>) -> Aabb3<S> { Aabb3::new(p1, p2) }
#[inline]
fn min<'a>(&'a self) -> &'a Point3<S> { &self.min }
#[inline]
fn max<'a>(&'a self) -> &'a Point3<S> { &self.max }
#[inline]
fn contains(&self, p: &Point3<S>) -> bool {
let v_min = p.sub_p(self.min());
let v_max = self.max().sub_p(p);
v_min.x >= zero() && v_min.y >= zero() && v_min.z >= zero() &&
v_max.x > zero() && v_max.y > zero() && v_max.z > zero()
}
}
impl<S: BaseNum> fmt::Show for Aabb3<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[{} - {}]", self.min, self.max)
}
}
impl<S: BaseFloat> Intersect<Option<Point2<S>>> for (Ray2<S>, Aabb2<S>) {
fn intersection(&self) -> Option<Point2<S>> {
match *self {
(ref ray, ref aabb) => {
let mut tmin: S = Float::neg_infinity();
let mut tmax: S = Float::infinity();
if ray.direction.x != zero() {
let tx1 = (aabb.min.x - ray.origin.x) / ray.direction.x;
let tx2 = (aabb.max.x - ray.origin.x) / ray.direction.x;
tmin = tmin.max(tx1.min(tx2));
tmax = tmax.min(tx1.max(tx2));
}
if ray.direction.y != zero() {
let ty1 = (aabb.min.y - ray.origin.y) / ray.direction.y;
let ty2 = (aabb.max.y - ray.origin.y) / ray.direction.y;
tmin = tmin.max(ty1.min(ty2));
tmax = tmax.min(ty1.max(ty2));
}
if tmin < zero() && tmax < zero() {
None
}
else if tmax >= tmin {
if tmin >= zero() {
Some(Point2::new(ray.origin.x + ray.direction.x * tmin,
ray.origin.y + ray.direction.y * tmin))
}
else {
Some(Point2::new(ray.origin.x + ray.direction.x * tmax,
ray.origin.y + ray.direction.y * tmax))
}
}
else {
None
}
}
}
}
}