cgmath/src/quaternion.rs
2022-04-16 10:52:39 +02:00

966 lines
28 KiB
Rust

// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::iter;
use std::ops::*;
use num_traits::{cast, NumCast};
#[cfg(feature = "rand")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
use structure::*;
use angle::Rad;
use approx;
use euler::Euler;
use matrix::{Matrix3, Matrix4};
use num::{BaseFloat, BaseNum};
use point::Point3;
use quaternion;
use rotation::{Basis3, Rotation, Rotation3};
use vector::Vector3;
#[cfg(feature = "mint")]
use mint;
/// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector
/// form.
///
/// This type is marked as `#[repr(C)]`.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Quaternion<S> {
/// The vector part of the quaternion.
pub v: Vector3<S>,
/// The scalar part of the quaternion.
pub s: S,
}
impl<S> Quaternion<S> {
/// Construct a new quaternion from one scalar component and three
/// imaginary components.
#[inline]
pub const fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion<S> {
Quaternion::from_sv(w, Vector3::new(xi, yj, zk))
}
/// Construct a new quaternion from a scalar and a vector.
#[inline]
pub const fn from_sv(s: S, v: Vector3<S>) -> Quaternion<S> {
Quaternion { v, s }
}
}
impl<S: BaseFloat> Quaternion<S> {
/// Construct a new quaternion as a closest arc between two vectors
///
/// Return the closest rotation that turns `src` vector into `dst`.
///
/// - [Related StackOverflow question](http://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another)
/// - [Ogre implementation for normalized vectors](https://bitbucket.org/sinbad/ogre/src/9db75e3ba05c/OgreMain/include/OgreVector3.h?fileviewer=file-view-default#cl-651)
pub fn from_arc(
src: Vector3<S>,
dst: Vector3<S>,
fallback: Option<Vector3<S>>,
) -> Quaternion<S> {
let mag_avg = (src.magnitude2() * dst.magnitude2()).sqrt();
let dot = src.dot(dst);
if ulps_eq!(dot, &mag_avg) {
Quaternion::<S>::one()
} else if ulps_eq!(dot, &-mag_avg) {
let axis = fallback.unwrap_or_else(|| {
let mut v = Vector3::unit_x().cross(src);
if ulps_eq!(v, &Zero::zero()) {
v = Vector3::unit_y().cross(src);
}
v.normalize()
});
Quaternion::from_axis_angle(axis, Rad::turn_div_2())
} else {
Quaternion::from_sv(mag_avg + dot, src.cross(dst)).normalize()
}
}
/// The conjugate of the quaternion.
#[inline]
pub fn conjugate(self) -> Quaternion<S> {
Quaternion::from_sv(self.s, -self.v)
}
/// Do a normalized linear interpolation with `other`, by `amount`.
///
/// This takes the shortest path, so if the quaternions have a negative
/// dot product, the interpolation will be between `self` and `-other`.
pub fn nlerp(self, mut other: Quaternion<S>, amount: S) -> Quaternion<S> {
if self.dot(other) < S::zero() {
other = -other;
}
(self * (S::one() - amount) + other * amount).normalize()
}
/// Spherical Linear Interpolation
///
/// Return the spherical linear interpolation between the quaternion and
/// `other`. Both quaternions should be normalized first.
///
/// This takes the shortest path, so if the quaternions have a negative
/// dot product, the interpolation will be between `self` and `-other`.
///
/// # Performance notes
///
/// The `acos` operation used in `slerp` is an expensive operation, so
/// unless your quaternions are far away from each other it's generally
/// more advisable to use `nlerp` when you know your rotations are going
/// to be small.
///
/// - [Understanding Slerp, Then Not Using It](http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial](https://www.roiatalla.com/public/arcsynthesis/html/Positioning/Tut08%20Interpolation.html)
pub fn slerp(self, mut other: Quaternion<S>, amount: S) -> Quaternion<S> {
let mut dot = self.dot(other);
let dot_threshold: S = cast(0.9995f64).unwrap();
if dot < S::zero() {
other = -other;
dot = -dot;
}
// if quaternions are close together use `nlerp`
if dot > dot_threshold {
self.nlerp(other, amount)
} else {
// stay within the domain of acos()
let robust_dot = dot.min(S::one()).max(-S::one());
let theta = Rad::acos(robust_dot);
let scale1 = Rad::sin(theta * (S::one() - amount));
let scale2 = Rad::sin(theta * amount);
(self * scale1 + other * scale2).normalize()
}
}
pub fn is_finite(&self) -> bool {
self.s.is_finite() && self.v.is_finite()
}
}
impl<S: BaseFloat> Zero for Quaternion<S> {
#[inline]
fn zero() -> Quaternion<S> {
Quaternion::from_sv(S::zero(), Vector3::zero())
}
#[inline]
fn is_zero(&self) -> bool {
ulps_eq!(self, &Quaternion::<S>::zero())
}
}
impl<S: BaseFloat> One for Quaternion<S> {
#[inline]
fn one() -> Quaternion<S> {
Quaternion::from_sv(S::one(), Vector3::zero())
}
}
impl<S: BaseFloat> iter::Sum<Quaternion<S>> for Quaternion<S> {
#[inline]
fn sum<I: Iterator<Item = Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Quaternion::<S>::zero(), Add::add)
}
}
impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Quaternion<S>> for Quaternion<S> {
#[inline]
fn sum<I: Iterator<Item = &'a Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Quaternion::<S>::zero(), Add::add)
}
}
impl<S: BaseFloat> iter::Product<Quaternion<S>> for Quaternion<S> {
#[inline]
fn product<I: Iterator<Item = Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Quaternion::<S>::one(), Mul::mul)
}
}
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Quaternion<S>> for Quaternion<S> {
#[inline]
fn product<I: Iterator<Item = &'a Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Quaternion::<S>::one(), Mul::mul)
}
}
impl<S: BaseFloat> VectorSpace for Quaternion<S> {
type Scalar = S;
}
impl<S: BaseFloat> MetricSpace for Quaternion<S> {
type Metric = S;
#[inline]
fn distance2(self, other: Self) -> S {
(other - self).magnitude2()
}
}
impl<S: NumCast + Copy> Quaternion<S> {
/// Component-wise casting to another type.
pub fn cast<T: BaseFloat>(&self) -> Option<Quaternion<T>> {
let s = match NumCast::from(self.s) {
Some(s) => s,
None => return None,
};
let v = match self.v.cast() {
Some(v) => v,
None => return None,
};
Some(Quaternion::from_sv(s, v))
}
}
impl<S: BaseFloat> InnerSpace for Quaternion<S> {
default_fn!( dot(self, other: Quaternion<S>) -> S {
self.s * other.s + self.v.dot(other.v)
} );
}
impl<A> From<Euler<A>> for Quaternion<A::Unitless>
where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Quaternion<A::Unitless> {
// Euclidean Space has an Euler to quat equation, but it is for a different order (YXZ):
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm
// Page A-2 here has the formula for XYZ:
// http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf
let half = cast(0.5f64).unwrap();
let (s_x, c_x) = Rad::sin_cos(src.x.into() * half);
let (s_y, c_y) = Rad::sin_cos(src.y.into() * half);
let (s_z, c_z) = Rad::sin_cos(src.z.into() * half);
Quaternion::new(
-s_x * s_y * s_z + c_x * c_y * c_z,
s_x * c_y * c_z + s_y * s_z * c_x,
-s_x * s_z * c_y + s_y * c_x * c_z,
s_x * s_y * c_z + s_z * c_x * c_y,
)
}
}
impl_operator!(<S: BaseFloat> Neg for Quaternion<S> {
fn neg(quat) -> Quaternion<S> {
Quaternion::from_sv(-quat.s, -quat.v)
}
});
impl_operator!(<S: BaseFloat> Mul<S> for Quaternion<S> {
fn mul(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs)
}
});
impl_assignment_operator!(<S: BaseFloat> MulAssign<S> for Quaternion<S> {
fn mul_assign(&mut self, scalar) { self.s *= scalar; self.v *= scalar; }
});
impl_operator!(<S: BaseFloat> Div<S> for Quaternion<S> {
fn div(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs)
}
});
impl_assignment_operator!(<S: BaseFloat> DivAssign<S> for Quaternion<S> {
fn div_assign(&mut self, scalar) { self.s /= scalar; self.v /= scalar; }
});
impl_operator!(<S: BaseFloat> Rem<S> for Quaternion<S> {
fn rem(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s % rhs, lhs.v % rhs)
}
});
impl_assignment_operator!(<S: BaseFloat> RemAssign<S> for Quaternion<S> {
fn rem_assign(&mut self, scalar) { self.s %= scalar; self.v %= scalar; }
});
impl_operator!(<S: BaseFloat> Mul<Vector3<S> > for Quaternion<S> {
fn mul(lhs, rhs) -> Vector3<S> {{
let rhs = rhs.clone();
let two: S = cast(2i8).unwrap();
let tmp = lhs.v.cross(rhs) + (rhs * lhs.s);
(lhs.v.cross(tmp) * two) + rhs
}}
});
impl_operator!(<S: BaseFloat> Add<Quaternion<S> > for Quaternion<S> {
fn add(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v)
}
});
impl_assignment_operator!(<S: BaseFloat> AddAssign<Quaternion<S> > for Quaternion<S> {
fn add_assign(&mut self, other) { self.s += other.s; self.v += other.v; }
});
impl_operator!(<S: BaseFloat> Sub<Quaternion<S> > for Quaternion<S> {
fn sub(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v)
}
});
impl_assignment_operator!(<S: BaseFloat> SubAssign<Quaternion<S> > for Quaternion<S> {
fn sub_assign(&mut self, other) { self.s -= other.s; self.v -= other.v; }
});
impl_operator!(<S: BaseFloat> Mul<Quaternion<S> > for Quaternion<S> {
fn mul(lhs, rhs) -> Quaternion<S> {
Quaternion::new(
lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z,
lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y,
lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z,
lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x,
)
}
});
macro_rules! impl_scalar_mul {
($S:ident) => {
impl_operator!(Mul<Quaternion<$S>> for $S {
fn mul(scalar, quat) -> Quaternion<$S> {
Quaternion::from_sv(scalar * quat.s, scalar * quat.v)
}
});
};
}
macro_rules! impl_scalar_div {
($S:ident) => {
impl_operator!(Div<Quaternion<$S>> for $S {
fn div(scalar, quat) -> Quaternion<$S> {
Quaternion::from_sv(scalar / quat.s, scalar / quat.v)
}
});
};
}
impl_scalar_mul!(f32);
impl_scalar_mul!(f64);
impl_scalar_div!(f32);
impl_scalar_div!(f64);
impl<S: BaseFloat> approx::AbsDiffEq for Quaternion<S> {
type Epsilon = S::Epsilon;
#[inline]
fn default_epsilon() -> S::Epsilon {
S::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: S::Epsilon) -> bool {
S::abs_diff_eq(&self.s, &other.s, epsilon)
&& Vector3::abs_diff_eq(&self.v, &other.v, epsilon)
}
}
impl<S: BaseFloat> approx::RelativeEq for Quaternion<S> {
#[inline]
fn default_max_relative() -> S::Epsilon {
S::default_max_relative()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
S::relative_eq(&self.s, &other.s, epsilon, max_relative)
&& Vector3::relative_eq(&self.v, &other.v, epsilon, max_relative)
}
}
impl<S: BaseFloat> approx::UlpsEq for Quaternion<S> {
#[inline]
fn default_max_ulps() -> u32 {
S::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
S::ulps_eq(&self.s, &other.s, epsilon, max_ulps)
&& Vector3::ulps_eq(&self.v, &other.v, epsilon, max_ulps)
}
}
impl<S: BaseNum> From<Quaternion<S>> for Matrix3<S> {
/// Convert the quaternion to a 3 x 3 rotation matrix.
fn from(quat: Quaternion<S>) -> Matrix3<S> {
let x2 = quat.v.x + quat.v.x;
let y2 = quat.v.y + quat.v.y;
let z2 = quat.v.z + quat.v.z;
let xx2 = x2 * quat.v.x;
let xy2 = x2 * quat.v.y;
let xz2 = x2 * quat.v.z;
let yy2 = y2 * quat.v.y;
let yz2 = y2 * quat.v.z;
let zz2 = z2 * quat.v.z;
let sy2 = y2 * quat.s;
let sz2 = z2 * quat.s;
let sx2 = x2 * quat.s;
#[cfg_attr(rustfmt, rustfmt_skip)]
Matrix3::new(
S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2,
xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2,
)
}
}
impl<S: BaseNum> From<Quaternion<S>> for Matrix4<S> {
/// Convert the quaternion to a 4 x 4 rotation matrix.
fn from(quat: Quaternion<S>) -> Matrix4<S> {
let x2 = quat.v.x + quat.v.x;
let y2 = quat.v.y + quat.v.y;
let z2 = quat.v.z + quat.v.z;
let xx2 = x2 * quat.v.x;
let xy2 = x2 * quat.v.y;
let xz2 = x2 * quat.v.z;
let yy2 = y2 * quat.v.y;
let yz2 = y2 * quat.v.z;
let zz2 = z2 * quat.v.z;
let sy2 = y2 * quat.s;
let sz2 = z2 * quat.s;
let sx2 = x2 * quat.s;
#[cfg_attr(rustfmt, rustfmt_skip)]
Matrix4::new(
S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, S::zero(),
xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, S::zero(),
xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2, S::zero(),
S::zero(), S::zero(), S::zero(), S::one(),
)
}
}
// Quaternion Rotation impls
impl<S: BaseFloat> From<Quaternion<S>> for Basis3<S> {
#[inline]
fn from(quat: Quaternion<S>) -> Basis3<S> {
Basis3::from_quaternion(&quat)
}
}
impl<S: BaseFloat> Rotation for Quaternion<S> {
type Space = Point3<S>;
#[inline]
fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Quaternion<S> {
Matrix3::look_to_lh(dir, up).into()
}
#[inline]
fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Quaternion<S> {
// http://stackoverflow.com/a/11741520/2074937 see 'Half-Way Quaternion Solution'
let k_cos_theta = a.dot(b);
// same direction
if ulps_eq!(k_cos_theta, S::one()) {
return Quaternion::<S>::one();
}
let k = (a.magnitude2() * b.magnitude2()).sqrt();
// opposite direction
if ulps_eq!(k_cos_theta / k, -S::one()) {
let mut orthogonal = a.cross(Vector3::unit_x());
if ulps_eq!(orthogonal.magnitude2(), S::zero()) {
orthogonal = a.cross(Vector3::unit_y());
}
return Quaternion::from_sv(S::zero(), orthogonal.normalize());
}
// any other direction
Quaternion::from_sv(k + k_cos_theta, a.cross(b)).normalize()
}
/// Evaluate the conjugation of `vec` by `self`.
///
/// Note that `self` should be a unit quaternion (i.e. normalized) to represent a 3D rotation.
#[inline]
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> {
self * vec
}
#[inline]
fn invert(&self) -> Quaternion<S> {
self.conjugate() / self.magnitude2()
}
}
impl<S: BaseFloat> Rotation3 for Quaternion<S> {
type Scalar = S;
#[inline]
fn from_axis_angle<A: Into<Rad<S>>>(axis: Vector3<S>, angle: A) -> Quaternion<S> {
let (s, c) = Rad::sin_cos(angle.into() * cast(0.5f64).unwrap());
Quaternion::from_sv(c, axis * s)
}
}
impl<S: BaseNum> From<Quaternion<S>> for [S; 4] {
#[inline]
fn from(v: Quaternion<S>) -> Self {
let (xi, yj, zk, w) = v.into();
[xi, yj, zk, w]
}
}
impl<S: BaseNum> AsRef<[S; 4]> for Quaternion<S> {
#[inline]
fn as_ref(&self) -> &[S; 4] {
unsafe { &*(self as *const quaternion::Quaternion<S> as *const [S; 4]) }
}
}
impl<S: BaseNum> AsMut<[S; 4]> for Quaternion<S> {
#[inline]
fn as_mut(&mut self) -> &mut [S; 4] {
unsafe { &mut *(self as *mut quaternion::Quaternion<S> as *mut [S; 4]) }
}
}
impl<S: BaseNum> From<[S; 4]> for Quaternion<S> {
#[inline]
fn from(v: [S; 4]) -> Quaternion<S> {
Quaternion::new(v[3], v[0], v[1], v[2])
}
}
impl<'a, S: BaseNum> From<&'a [S; 4]> for &'a Quaternion<S> {
#[inline]
fn from(v: &'a [S; 4]) -> &'a Quaternion<S> {
unsafe { &*(v as *const [S; 4] as *const quaternion::Quaternion<S>) }
}
}
impl<'a, S: BaseNum> From<&'a mut [S; 4]> for &'a mut Quaternion<S> {
#[inline]
fn from(v: &'a mut [S; 4]) -> &'a mut Quaternion<S> {
unsafe { &mut *(v as *mut [S; 4] as *mut quaternion::Quaternion<S>) }
}
}
impl<S: BaseNum> From<Quaternion<S>> for (S, S, S, S) {
#[inline]
fn from(v: Quaternion<S>) -> Self {
let Quaternion {
s,
v: Vector3 { x, y, z },
} = v;
(x, y, z, s)
}
}
impl<S: BaseNum> AsRef<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn as_ref(&self) -> &(S, S, S, S) {
unsafe { &*(self as *const quaternion::Quaternion<S> as *const (S, S, S, S)) }
}
}
impl<S: BaseNum> AsMut<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn as_mut(&mut self) -> &mut (S, S, S, S) {
unsafe { &mut *(self as *mut quaternion::Quaternion<S> as *mut (S, S, S, S)) }
}
}
impl<S: BaseNum> From<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn from(v: (S, S, S, S)) -> Quaternion<S> {
let (xi, yj, zk, w) = v;
Quaternion::new(w, xi, yj, zk)
}
}
impl<'a, S: BaseNum> From<&'a (S, S, S, S)> for &'a Quaternion<S> {
#[inline]
fn from(v: &'a (S, S, S, S)) -> &'a Quaternion<S> {
unsafe { &*(v as *const (S, S, S, S) as *const quaternion::Quaternion<S>) }
}
}
impl<'a, S: BaseNum> From<&'a mut (S, S, S, S)> for &'a mut Quaternion<S> {
#[inline]
fn from(v: &'a mut (S, S, S, S)) -> &'a mut Quaternion<S> {
unsafe { &mut *(v as *mut (S, S, S, S) as *mut quaternion::Quaternion<S>) }
}
}
macro_rules! index_operators {
($S:ident, $Output:ty, $I:ty) => {
impl<$S: BaseNum> Index<$I> for Quaternion<$S> {
type Output = $Output;
#[inline]
fn index<'a>(&'a self, i: $I) -> &'a $Output {
let v: &[$S; 4] = self.as_ref();
&v[i]
}
}
impl<$S: BaseNum> IndexMut<$I> for Quaternion<$S> {
#[inline]
fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output {
let v: &mut [$S; 4] = self.as_mut();
&mut v[i]
}
}
};
}
index_operators!(S, S, usize);
index_operators!(S, [S], Range<usize>);
index_operators!(S, [S], RangeTo<usize>);
index_operators!(S, [S], RangeFrom<usize>);
index_operators!(S, [S], RangeFull);
#[cfg(feature = "rand")]
impl<S> Distribution<Quaternion<S>> for Standard
where
Standard: Distribution<S>,
Standard: Distribution<Vector3<S>>,
S: BaseNum,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Quaternion<S> {
Quaternion::from_sv(rng.gen(), rng.gen())
}
}
#[cfg(feature = "mint")]
impl<S> From<mint::Quaternion<S>> for Quaternion<S> {
fn from(q: mint::Quaternion<S>) -> Self {
Quaternion {
s: q.s,
v: q.v.into(),
}
}
}
#[cfg(feature = "mint")]
impl<S: Clone> From<Quaternion<S>> for mint::Quaternion<S> {
fn from(v: Quaternion<S>) -> Self {
mint::Quaternion {
s: v.s,
v: v.v.into(),
}
}
}
#[cfg(feature = "mint")]
impl<S: Clone> mint::IntoMint for Quaternion<S> {
type MintType = mint::Quaternion<S>;
}
#[cfg(feature = "bytemuck")]
impl_bytemuck_cast!(Quaternion);
#[cfg(test)]
mod tests {
use quaternion::*;
use vector::*;
const QUATERNION: Quaternion<f32> = Quaternion {
v: Vector3 {
x: 1.0,
y: 2.0,
z: 3.0,
},
s: 4.0,
};
#[test]
fn test_into() {
let v = QUATERNION;
{
let v: [f32; 4] = v.into();
assert_eq!(v, [1.0, 2.0, 3.0, 4.0]);
}
{
let v: (f32, f32, f32, f32) = v.into();
assert_eq!(v, (1.0, 2.0, 3.0, 4.0));
}
}
#[test]
fn test_as_ref() {
let v = QUATERNION;
{
let v: &[f32; 4] = v.as_ref();
assert_eq!(v, &[1.0, 2.0, 3.0, 4.0]);
}
{
let v: &(f32, f32, f32, f32) = v.as_ref();
assert_eq!(v, &(1.0, 2.0, 3.0, 4.0));
}
}
#[test]
fn test_as_mut() {
let mut v = QUATERNION;
{
let v: &mut [f32; 4] = v.as_mut();
assert_eq!(v, &mut [1.0, 2.0, 3.0, 4.0]);
}
{
let v: &mut (f32, f32, f32, f32) = v.as_mut();
assert_eq!(v, &mut (1.0, 2.0, 3.0, 4.0));
}
}
#[test]
fn test_from() {
assert_eq!(Quaternion::from([1.0, 2.0, 3.0, 4.0]), QUATERNION);
{
let v = &[1.0, 2.0, 3.0, 4.0];
let v: &Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
{
let v = &mut [1.0, 2.0, 3.0, 4.0];
let v: &mut Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
assert_eq!(Quaternion::from((1.0, 2.0, 3.0, 4.0)), QUATERNION);
{
let v = &(1.0, 2.0, 3.0, 4.0);
let v: &Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
{
let v = &mut (1.0, 2.0, 3.0, 4.0);
let v: &mut Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
}
#[test]
fn test_nlerp_same() {
let q = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(q, q.nlerp(q, 0.1234));
}
#[test]
fn test_nlerp_start() {
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(q, q.nlerp(r, 0.0));
}
#[test]
fn test_nlerp_end() {
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(r, q.nlerp(r, 1.0));
}
#[test]
fn test_nlerp_half() {
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected =
Quaternion::from([0.0, 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt()]);
assert_ulps_eq!(expected, q.nlerp(r, 0.5));
}
#[test]
fn test_nlerp_quarter() {
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-1.0 / 13f64.sqrt(),
2.0 / 13f64.sqrt(),
2.0 / 13f64.sqrt(),
2.0 / 13f64.sqrt(),
]);
assert_ulps_eq!(expected, q.nlerp(r, 0.25));
}
#[test]
fn test_nlerp_zero_dot() {
let q = Quaternion::from([-0.5, -0.5, 0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-1.0 / 10f64.sqrt(),
-1.0 / 10f64.sqrt(),
2.0 / 10f64.sqrt(),
2.0 / 10f64.sqrt(),
]);
assert_ulps_eq!(expected, q.nlerp(r, 0.25));
}
#[test]
fn test_nlerp_negative_dot() {
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-2.0 / 13f64.sqrt(),
-2.0 / 13f64.sqrt(),
-2.0 / 13f64.sqrt(),
1.0 / 13f64.sqrt(),
]);
assert_ulps_eq!(expected, q.nlerp(r, 0.25));
}
#[test]
fn test_nlerp_opposite() {
let q = Quaternion::from([-0.5, -0.5, -0.5, -0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(q, q.nlerp(r, 0.25));
assert_ulps_eq!(q, q.nlerp(r, 0.75));
}
#[test]
fn test_nlerp_extrapolate() {
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-1.0 / 12f64.sqrt(),
-1.0 / 12f64.sqrt(),
-1.0 / 12f64.sqrt(),
3.0 / 12f64.sqrt(),
]);
assert_ulps_eq!(expected, q.nlerp(r, -1.0));
}
#[test]
fn test_slerp_same() {
let q = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(q, q.slerp(q, 0.1234));
}
#[test]
fn test_slerp_start() {
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(q, q.slerp(r, 0.0));
}
#[test]
fn test_slerp_end() {
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(r, q.slerp(r, 1.0));
}
#[test]
fn test_slerp_half() {
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected =
Quaternion::from([0.0, 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt()]);
assert_ulps_eq!(expected, q.slerp(r, 0.5));
}
#[test]
fn test_slerp_quarter() {
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-0.2588190451025208,
0.5576775358252053,
0.5576775358252053,
0.5576775358252053,
]);
assert_ulps_eq!(expected, q.slerp(r, 0.25));
}
#[test]
fn test_slerp_zero_dot() {
let q = Quaternion::from([-0.5, -0.5, 0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-0.27059805007309845,
-0.27059805007309845,
0.6532814824381883,
0.6532814824381883,
]);
assert_ulps_eq!(expected, q.slerp(r, 0.25));
}
#[test]
fn test_slerp_negative_dot() {
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([
-0.5576775358252053,
-0.5576775358252053,
-0.5576775358252053,
0.2588190451025208,
]);
assert_ulps_eq!(expected, q.slerp(r, 0.25));
}
#[test]
fn test_slerp_opposite() {
let q = Quaternion::from([-0.5, -0.5, -0.5, -0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
assert_ulps_eq!(q, q.slerp(r, 0.25));
assert_ulps_eq!(q, q.slerp(r, 0.75));
}
#[test]
fn test_slerp_extrapolate() {
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
let expected = Quaternion::from([0.0, 0.0, 0.0, 1.0]);
assert_ulps_eq!(expected, q.slerp(r, -1.0));
}
#[test]
fn test_slerp_regression() {
let a = Quaternion::<f32>::new(0.00052311074, 0.9999999, 0.00014682197, -0.000016342687);
let b = Quaternion::<f32>::new(0.019973433, -0.99980056, -0.00015678025, 0.000013882192);
assert_ulps_eq!(a.slerp(b, 0.5).magnitude(), 1.0);
}
}