966 lines
28 KiB
Rust
966 lines
28 KiB
Rust
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
|
|
// refer to the Cargo.toml file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
use std::iter;
|
|
use std::ops::*;
|
|
|
|
use num_traits::{cast, NumCast};
|
|
#[cfg(feature = "rand")]
|
|
use rand::{
|
|
distributions::{Distribution, Standard},
|
|
Rng,
|
|
};
|
|
|
|
use structure::*;
|
|
|
|
use angle::Rad;
|
|
use approx;
|
|
use euler::Euler;
|
|
use matrix::{Matrix3, Matrix4};
|
|
use num::{BaseFloat, BaseNum};
|
|
use point::Point3;
|
|
use quaternion;
|
|
use rotation::{Basis3, Rotation, Rotation3};
|
|
use vector::Vector3;
|
|
|
|
#[cfg(feature = "mint")]
|
|
use mint;
|
|
|
|
/// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector
|
|
/// form.
|
|
///
|
|
/// This type is marked as `#[repr(C)]`.
|
|
#[repr(C)]
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
|
|
pub struct Quaternion<S> {
|
|
/// The vector part of the quaternion.
|
|
pub v: Vector3<S>,
|
|
/// The scalar part of the quaternion.
|
|
pub s: S,
|
|
}
|
|
|
|
impl<S> Quaternion<S> {
|
|
/// Construct a new quaternion from one scalar component and three
|
|
/// imaginary components.
|
|
#[inline]
|
|
pub const fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion<S> {
|
|
Quaternion::from_sv(w, Vector3::new(xi, yj, zk))
|
|
}
|
|
|
|
/// Construct a new quaternion from a scalar and a vector.
|
|
#[inline]
|
|
pub const fn from_sv(s: S, v: Vector3<S>) -> Quaternion<S> {
|
|
Quaternion { v, s }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Quaternion<S> {
|
|
/// Construct a new quaternion as a closest arc between two vectors
|
|
///
|
|
/// Return the closest rotation that turns `src` vector into `dst`.
|
|
///
|
|
/// - [Related StackOverflow question](http://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another)
|
|
/// - [Ogre implementation for normalized vectors](https://bitbucket.org/sinbad/ogre/src/9db75e3ba05c/OgreMain/include/OgreVector3.h?fileviewer=file-view-default#cl-651)
|
|
pub fn from_arc(
|
|
src: Vector3<S>,
|
|
dst: Vector3<S>,
|
|
fallback: Option<Vector3<S>>,
|
|
) -> Quaternion<S> {
|
|
let mag_avg = (src.magnitude2() * dst.magnitude2()).sqrt();
|
|
let dot = src.dot(dst);
|
|
if ulps_eq!(dot, &mag_avg) {
|
|
Quaternion::<S>::one()
|
|
} else if ulps_eq!(dot, &-mag_avg) {
|
|
let axis = fallback.unwrap_or_else(|| {
|
|
let mut v = Vector3::unit_x().cross(src);
|
|
if ulps_eq!(v, &Zero::zero()) {
|
|
v = Vector3::unit_y().cross(src);
|
|
}
|
|
v.normalize()
|
|
});
|
|
Quaternion::from_axis_angle(axis, Rad::turn_div_2())
|
|
} else {
|
|
Quaternion::from_sv(mag_avg + dot, src.cross(dst)).normalize()
|
|
}
|
|
}
|
|
|
|
/// The conjugate of the quaternion.
|
|
#[inline]
|
|
pub fn conjugate(self) -> Quaternion<S> {
|
|
Quaternion::from_sv(self.s, -self.v)
|
|
}
|
|
|
|
/// Do a normalized linear interpolation with `other`, by `amount`.
|
|
///
|
|
/// This takes the shortest path, so if the quaternions have a negative
|
|
/// dot product, the interpolation will be between `self` and `-other`.
|
|
pub fn nlerp(self, mut other: Quaternion<S>, amount: S) -> Quaternion<S> {
|
|
if self.dot(other) < S::zero() {
|
|
other = -other;
|
|
}
|
|
|
|
(self * (S::one() - amount) + other * amount).normalize()
|
|
}
|
|
|
|
/// Spherical Linear Interpolation
|
|
///
|
|
/// Return the spherical linear interpolation between the quaternion and
|
|
/// `other`. Both quaternions should be normalized first.
|
|
///
|
|
/// This takes the shortest path, so if the quaternions have a negative
|
|
/// dot product, the interpolation will be between `self` and `-other`.
|
|
///
|
|
/// # Performance notes
|
|
///
|
|
/// The `acos` operation used in `slerp` is an expensive operation, so
|
|
/// unless your quaternions are far away from each other it's generally
|
|
/// more advisable to use `nlerp` when you know your rotations are going
|
|
/// to be small.
|
|
///
|
|
/// - [Understanding Slerp, Then Not Using It](http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
|
|
/// - [Arcsynthesis OpenGL tutorial](https://www.roiatalla.com/public/arcsynthesis/html/Positioning/Tut08%20Interpolation.html)
|
|
pub fn slerp(self, mut other: Quaternion<S>, amount: S) -> Quaternion<S> {
|
|
let mut dot = self.dot(other);
|
|
let dot_threshold: S = cast(0.9995f64).unwrap();
|
|
|
|
if dot < S::zero() {
|
|
other = -other;
|
|
dot = -dot;
|
|
}
|
|
|
|
// if quaternions are close together use `nlerp`
|
|
if dot > dot_threshold {
|
|
self.nlerp(other, amount)
|
|
} else {
|
|
// stay within the domain of acos()
|
|
let robust_dot = dot.min(S::one()).max(-S::one());
|
|
|
|
let theta = Rad::acos(robust_dot);
|
|
|
|
let scale1 = Rad::sin(theta * (S::one() - amount));
|
|
let scale2 = Rad::sin(theta * amount);
|
|
|
|
(self * scale1 + other * scale2).normalize()
|
|
}
|
|
}
|
|
|
|
pub fn is_finite(&self) -> bool {
|
|
self.s.is_finite() && self.v.is_finite()
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Zero for Quaternion<S> {
|
|
#[inline]
|
|
fn zero() -> Quaternion<S> {
|
|
Quaternion::from_sv(S::zero(), Vector3::zero())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_zero(&self) -> bool {
|
|
ulps_eq!(self, &Quaternion::<S>::zero())
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> One for Quaternion<S> {
|
|
#[inline]
|
|
fn one() -> Quaternion<S> {
|
|
Quaternion::from_sv(S::one(), Vector3::zero())
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> iter::Sum<Quaternion<S>> for Quaternion<S> {
|
|
#[inline]
|
|
fn sum<I: Iterator<Item = Quaternion<S>>>(iter: I) -> Quaternion<S> {
|
|
iter.fold(Quaternion::<S>::zero(), Add::add)
|
|
}
|
|
}
|
|
|
|
impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Quaternion<S>> for Quaternion<S> {
|
|
#[inline]
|
|
fn sum<I: Iterator<Item = &'a Quaternion<S>>>(iter: I) -> Quaternion<S> {
|
|
iter.fold(Quaternion::<S>::zero(), Add::add)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> iter::Product<Quaternion<S>> for Quaternion<S> {
|
|
#[inline]
|
|
fn product<I: Iterator<Item = Quaternion<S>>>(iter: I) -> Quaternion<S> {
|
|
iter.fold(Quaternion::<S>::one(), Mul::mul)
|
|
}
|
|
}
|
|
|
|
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Quaternion<S>> for Quaternion<S> {
|
|
#[inline]
|
|
fn product<I: Iterator<Item = &'a Quaternion<S>>>(iter: I) -> Quaternion<S> {
|
|
iter.fold(Quaternion::<S>::one(), Mul::mul)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> VectorSpace for Quaternion<S> {
|
|
type Scalar = S;
|
|
}
|
|
|
|
impl<S: BaseFloat> MetricSpace for Quaternion<S> {
|
|
type Metric = S;
|
|
|
|
#[inline]
|
|
fn distance2(self, other: Self) -> S {
|
|
(other - self).magnitude2()
|
|
}
|
|
}
|
|
|
|
impl<S: NumCast + Copy> Quaternion<S> {
|
|
/// Component-wise casting to another type.
|
|
pub fn cast<T: BaseFloat>(&self) -> Option<Quaternion<T>> {
|
|
let s = match NumCast::from(self.s) {
|
|
Some(s) => s,
|
|
None => return None,
|
|
};
|
|
let v = match self.v.cast() {
|
|
Some(v) => v,
|
|
None => return None,
|
|
};
|
|
Some(Quaternion::from_sv(s, v))
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> InnerSpace for Quaternion<S> {
|
|
default_fn!( dot(self, other: Quaternion<S>) -> S {
|
|
self.s * other.s + self.v.dot(other.v)
|
|
} );
|
|
}
|
|
|
|
impl<A> From<Euler<A>> for Quaternion<A::Unitless>
|
|
where
|
|
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
|
|
{
|
|
fn from(src: Euler<A>) -> Quaternion<A::Unitless> {
|
|
// Euclidean Space has an Euler to quat equation, but it is for a different order (YXZ):
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm
|
|
// Page A-2 here has the formula for XYZ:
|
|
// http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf
|
|
|
|
let half = cast(0.5f64).unwrap();
|
|
let (s_x, c_x) = Rad::sin_cos(src.x.into() * half);
|
|
let (s_y, c_y) = Rad::sin_cos(src.y.into() * half);
|
|
let (s_z, c_z) = Rad::sin_cos(src.z.into() * half);
|
|
|
|
Quaternion::new(
|
|
-s_x * s_y * s_z + c_x * c_y * c_z,
|
|
s_x * c_y * c_z + s_y * s_z * c_x,
|
|
-s_x * s_z * c_y + s_y * c_x * c_z,
|
|
s_x * s_y * c_z + s_z * c_x * c_y,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl_operator!(<S: BaseFloat> Neg for Quaternion<S> {
|
|
fn neg(quat) -> Quaternion<S> {
|
|
Quaternion::from_sv(-quat.s, -quat.v)
|
|
}
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Mul<S> for Quaternion<S> {
|
|
fn mul(lhs, rhs) -> Quaternion<S> {
|
|
Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs)
|
|
}
|
|
});
|
|
|
|
impl_assignment_operator!(<S: BaseFloat> MulAssign<S> for Quaternion<S> {
|
|
fn mul_assign(&mut self, scalar) { self.s *= scalar; self.v *= scalar; }
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Div<S> for Quaternion<S> {
|
|
fn div(lhs, rhs) -> Quaternion<S> {
|
|
Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs)
|
|
}
|
|
});
|
|
|
|
impl_assignment_operator!(<S: BaseFloat> DivAssign<S> for Quaternion<S> {
|
|
fn div_assign(&mut self, scalar) { self.s /= scalar; self.v /= scalar; }
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Rem<S> for Quaternion<S> {
|
|
fn rem(lhs, rhs) -> Quaternion<S> {
|
|
Quaternion::from_sv(lhs.s % rhs, lhs.v % rhs)
|
|
}
|
|
});
|
|
|
|
impl_assignment_operator!(<S: BaseFloat> RemAssign<S> for Quaternion<S> {
|
|
fn rem_assign(&mut self, scalar) { self.s %= scalar; self.v %= scalar; }
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Mul<Vector3<S> > for Quaternion<S> {
|
|
fn mul(lhs, rhs) -> Vector3<S> {{
|
|
let rhs = rhs.clone();
|
|
let two: S = cast(2i8).unwrap();
|
|
let tmp = lhs.v.cross(rhs) + (rhs * lhs.s);
|
|
(lhs.v.cross(tmp) * two) + rhs
|
|
}}
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Add<Quaternion<S> > for Quaternion<S> {
|
|
fn add(lhs, rhs) -> Quaternion<S> {
|
|
Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v)
|
|
}
|
|
});
|
|
|
|
impl_assignment_operator!(<S: BaseFloat> AddAssign<Quaternion<S> > for Quaternion<S> {
|
|
fn add_assign(&mut self, other) { self.s += other.s; self.v += other.v; }
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Sub<Quaternion<S> > for Quaternion<S> {
|
|
fn sub(lhs, rhs) -> Quaternion<S> {
|
|
Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v)
|
|
}
|
|
});
|
|
|
|
impl_assignment_operator!(<S: BaseFloat> SubAssign<Quaternion<S> > for Quaternion<S> {
|
|
fn sub_assign(&mut self, other) { self.s -= other.s; self.v -= other.v; }
|
|
});
|
|
|
|
impl_operator!(<S: BaseFloat> Mul<Quaternion<S> > for Quaternion<S> {
|
|
fn mul(lhs, rhs) -> Quaternion<S> {
|
|
Quaternion::new(
|
|
lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z,
|
|
lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y,
|
|
lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z,
|
|
lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x,
|
|
)
|
|
}
|
|
});
|
|
|
|
macro_rules! impl_scalar_mul {
|
|
($S:ident) => {
|
|
impl_operator!(Mul<Quaternion<$S>> for $S {
|
|
fn mul(scalar, quat) -> Quaternion<$S> {
|
|
Quaternion::from_sv(scalar * quat.s, scalar * quat.v)
|
|
}
|
|
});
|
|
};
|
|
}
|
|
|
|
macro_rules! impl_scalar_div {
|
|
($S:ident) => {
|
|
impl_operator!(Div<Quaternion<$S>> for $S {
|
|
fn div(scalar, quat) -> Quaternion<$S> {
|
|
Quaternion::from_sv(scalar / quat.s, scalar / quat.v)
|
|
}
|
|
});
|
|
};
|
|
}
|
|
|
|
impl_scalar_mul!(f32);
|
|
impl_scalar_mul!(f64);
|
|
impl_scalar_div!(f32);
|
|
impl_scalar_div!(f64);
|
|
|
|
impl<S: BaseFloat> approx::AbsDiffEq for Quaternion<S> {
|
|
type Epsilon = S::Epsilon;
|
|
|
|
#[inline]
|
|
fn default_epsilon() -> S::Epsilon {
|
|
S::default_epsilon()
|
|
}
|
|
|
|
#[inline]
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: S::Epsilon) -> bool {
|
|
S::abs_diff_eq(&self.s, &other.s, epsilon)
|
|
&& Vector3::abs_diff_eq(&self.v, &other.v, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> approx::RelativeEq for Quaternion<S> {
|
|
#[inline]
|
|
fn default_max_relative() -> S::Epsilon {
|
|
S::default_max_relative()
|
|
}
|
|
|
|
#[inline]
|
|
fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
|
|
S::relative_eq(&self.s, &other.s, epsilon, max_relative)
|
|
&& Vector3::relative_eq(&self.v, &other.v, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> approx::UlpsEq for Quaternion<S> {
|
|
#[inline]
|
|
fn default_max_ulps() -> u32 {
|
|
S::default_max_ulps()
|
|
}
|
|
|
|
#[inline]
|
|
fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
|
|
S::ulps_eq(&self.s, &other.s, epsilon, max_ulps)
|
|
&& Vector3::ulps_eq(&self.v, &other.v, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> From<Quaternion<S>> for Matrix3<S> {
|
|
/// Convert the quaternion to a 3 x 3 rotation matrix.
|
|
fn from(quat: Quaternion<S>) -> Matrix3<S> {
|
|
let x2 = quat.v.x + quat.v.x;
|
|
let y2 = quat.v.y + quat.v.y;
|
|
let z2 = quat.v.z + quat.v.z;
|
|
|
|
let xx2 = x2 * quat.v.x;
|
|
let xy2 = x2 * quat.v.y;
|
|
let xz2 = x2 * quat.v.z;
|
|
|
|
let yy2 = y2 * quat.v.y;
|
|
let yz2 = y2 * quat.v.z;
|
|
let zz2 = z2 * quat.v.z;
|
|
|
|
let sy2 = y2 * quat.s;
|
|
let sz2 = z2 * quat.s;
|
|
let sx2 = x2 * quat.s;
|
|
|
|
#[cfg_attr(rustfmt, rustfmt_skip)]
|
|
Matrix3::new(
|
|
S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2,
|
|
xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2,
|
|
xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> From<Quaternion<S>> for Matrix4<S> {
|
|
/// Convert the quaternion to a 4 x 4 rotation matrix.
|
|
fn from(quat: Quaternion<S>) -> Matrix4<S> {
|
|
let x2 = quat.v.x + quat.v.x;
|
|
let y2 = quat.v.y + quat.v.y;
|
|
let z2 = quat.v.z + quat.v.z;
|
|
|
|
let xx2 = x2 * quat.v.x;
|
|
let xy2 = x2 * quat.v.y;
|
|
let xz2 = x2 * quat.v.z;
|
|
|
|
let yy2 = y2 * quat.v.y;
|
|
let yz2 = y2 * quat.v.z;
|
|
let zz2 = z2 * quat.v.z;
|
|
|
|
let sy2 = y2 * quat.s;
|
|
let sz2 = z2 * quat.s;
|
|
let sx2 = x2 * quat.s;
|
|
|
|
#[cfg_attr(rustfmt, rustfmt_skip)]
|
|
Matrix4::new(
|
|
S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, S::zero(),
|
|
xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, S::zero(),
|
|
xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2, S::zero(),
|
|
S::zero(), S::zero(), S::zero(), S::one(),
|
|
)
|
|
}
|
|
}
|
|
|
|
// Quaternion Rotation impls
|
|
|
|
impl<S: BaseFloat> From<Quaternion<S>> for Basis3<S> {
|
|
#[inline]
|
|
fn from(quat: Quaternion<S>) -> Basis3<S> {
|
|
Basis3::from_quaternion(&quat)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Rotation for Quaternion<S> {
|
|
type Space = Point3<S>;
|
|
|
|
#[inline]
|
|
fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Quaternion<S> {
|
|
Matrix3::look_to_lh(dir, up).into()
|
|
}
|
|
|
|
#[inline]
|
|
fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Quaternion<S> {
|
|
// http://stackoverflow.com/a/11741520/2074937 see 'Half-Way Quaternion Solution'
|
|
|
|
let k_cos_theta = a.dot(b);
|
|
|
|
// same direction
|
|
if ulps_eq!(k_cos_theta, S::one()) {
|
|
return Quaternion::<S>::one();
|
|
}
|
|
|
|
let k = (a.magnitude2() * b.magnitude2()).sqrt();
|
|
|
|
// opposite direction
|
|
if ulps_eq!(k_cos_theta / k, -S::one()) {
|
|
let mut orthogonal = a.cross(Vector3::unit_x());
|
|
if ulps_eq!(orthogonal.magnitude2(), S::zero()) {
|
|
orthogonal = a.cross(Vector3::unit_y());
|
|
}
|
|
return Quaternion::from_sv(S::zero(), orthogonal.normalize());
|
|
}
|
|
|
|
// any other direction
|
|
Quaternion::from_sv(k + k_cos_theta, a.cross(b)).normalize()
|
|
}
|
|
|
|
/// Evaluate the conjugation of `vec` by `self`.
|
|
///
|
|
/// Note that `self` should be a unit quaternion (i.e. normalized) to represent a 3D rotation.
|
|
#[inline]
|
|
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> {
|
|
self * vec
|
|
}
|
|
|
|
#[inline]
|
|
fn invert(&self) -> Quaternion<S> {
|
|
self.conjugate() / self.magnitude2()
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> Rotation3 for Quaternion<S> {
|
|
type Scalar = S;
|
|
|
|
#[inline]
|
|
fn from_axis_angle<A: Into<Rad<S>>>(axis: Vector3<S>, angle: A) -> Quaternion<S> {
|
|
let (s, c) = Rad::sin_cos(angle.into() * cast(0.5f64).unwrap());
|
|
Quaternion::from_sv(c, axis * s)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> From<Quaternion<S>> for [S; 4] {
|
|
#[inline]
|
|
fn from(v: Quaternion<S>) -> Self {
|
|
let (xi, yj, zk, w) = v.into();
|
|
[xi, yj, zk, w]
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> AsRef<[S; 4]> for Quaternion<S> {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[S; 4] {
|
|
unsafe { &*(self as *const quaternion::Quaternion<S> as *const [S; 4]) }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> AsMut<[S; 4]> for Quaternion<S> {
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [S; 4] {
|
|
unsafe { &mut *(self as *mut quaternion::Quaternion<S> as *mut [S; 4]) }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> From<[S; 4]> for Quaternion<S> {
|
|
#[inline]
|
|
fn from(v: [S; 4]) -> Quaternion<S> {
|
|
Quaternion::new(v[3], v[0], v[1], v[2])
|
|
}
|
|
}
|
|
|
|
impl<'a, S: BaseNum> From<&'a [S; 4]> for &'a Quaternion<S> {
|
|
#[inline]
|
|
fn from(v: &'a [S; 4]) -> &'a Quaternion<S> {
|
|
unsafe { &*(v as *const [S; 4] as *const quaternion::Quaternion<S>) }
|
|
}
|
|
}
|
|
|
|
impl<'a, S: BaseNum> From<&'a mut [S; 4]> for &'a mut Quaternion<S> {
|
|
#[inline]
|
|
fn from(v: &'a mut [S; 4]) -> &'a mut Quaternion<S> {
|
|
unsafe { &mut *(v as *mut [S; 4] as *mut quaternion::Quaternion<S>) }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> From<Quaternion<S>> for (S, S, S, S) {
|
|
#[inline]
|
|
fn from(v: Quaternion<S>) -> Self {
|
|
let Quaternion {
|
|
s,
|
|
v: Vector3 { x, y, z },
|
|
} = v;
|
|
(x, y, z, s)
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> AsRef<(S, S, S, S)> for Quaternion<S> {
|
|
#[inline]
|
|
fn as_ref(&self) -> &(S, S, S, S) {
|
|
unsafe { &*(self as *const quaternion::Quaternion<S> as *const (S, S, S, S)) }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> AsMut<(S, S, S, S)> for Quaternion<S> {
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut (S, S, S, S) {
|
|
unsafe { &mut *(self as *mut quaternion::Quaternion<S> as *mut (S, S, S, S)) }
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> From<(S, S, S, S)> for Quaternion<S> {
|
|
#[inline]
|
|
fn from(v: (S, S, S, S)) -> Quaternion<S> {
|
|
let (xi, yj, zk, w) = v;
|
|
Quaternion::new(w, xi, yj, zk)
|
|
}
|
|
}
|
|
|
|
impl<'a, S: BaseNum> From<&'a (S, S, S, S)> for &'a Quaternion<S> {
|
|
#[inline]
|
|
fn from(v: &'a (S, S, S, S)) -> &'a Quaternion<S> {
|
|
unsafe { &*(v as *const (S, S, S, S) as *const quaternion::Quaternion<S>) }
|
|
}
|
|
}
|
|
|
|
impl<'a, S: BaseNum> From<&'a mut (S, S, S, S)> for &'a mut Quaternion<S> {
|
|
#[inline]
|
|
fn from(v: &'a mut (S, S, S, S)) -> &'a mut Quaternion<S> {
|
|
unsafe { &mut *(v as *mut (S, S, S, S) as *mut quaternion::Quaternion<S>) }
|
|
}
|
|
}
|
|
|
|
macro_rules! index_operators {
|
|
($S:ident, $Output:ty, $I:ty) => {
|
|
impl<$S: BaseNum> Index<$I> for Quaternion<$S> {
|
|
type Output = $Output;
|
|
|
|
#[inline]
|
|
fn index<'a>(&'a self, i: $I) -> &'a $Output {
|
|
let v: &[$S; 4] = self.as_ref();
|
|
&v[i]
|
|
}
|
|
}
|
|
|
|
impl<$S: BaseNum> IndexMut<$I> for Quaternion<$S> {
|
|
#[inline]
|
|
fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output {
|
|
let v: &mut [$S; 4] = self.as_mut();
|
|
&mut v[i]
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
index_operators!(S, S, usize);
|
|
index_operators!(S, [S], Range<usize>);
|
|
index_operators!(S, [S], RangeTo<usize>);
|
|
index_operators!(S, [S], RangeFrom<usize>);
|
|
index_operators!(S, [S], RangeFull);
|
|
|
|
#[cfg(feature = "rand")]
|
|
impl<S> Distribution<Quaternion<S>> for Standard
|
|
where
|
|
Standard: Distribution<S>,
|
|
Standard: Distribution<Vector3<S>>,
|
|
S: BaseNum,
|
|
{
|
|
#[inline]
|
|
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Quaternion<S> {
|
|
Quaternion::from_sv(rng.gen(), rng.gen())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "mint")]
|
|
impl<S> From<mint::Quaternion<S>> for Quaternion<S> {
|
|
fn from(q: mint::Quaternion<S>) -> Self {
|
|
Quaternion {
|
|
s: q.s,
|
|
v: q.v.into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "mint")]
|
|
impl<S: Clone> From<Quaternion<S>> for mint::Quaternion<S> {
|
|
fn from(v: Quaternion<S>) -> Self {
|
|
mint::Quaternion {
|
|
s: v.s,
|
|
v: v.v.into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "mint")]
|
|
impl<S: Clone> mint::IntoMint for Quaternion<S> {
|
|
type MintType = mint::Quaternion<S>;
|
|
}
|
|
|
|
#[cfg(feature = "bytemuck")]
|
|
impl_bytemuck_cast!(Quaternion);
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use quaternion::*;
|
|
use vector::*;
|
|
|
|
const QUATERNION: Quaternion<f32> = Quaternion {
|
|
v: Vector3 {
|
|
x: 1.0,
|
|
y: 2.0,
|
|
z: 3.0,
|
|
},
|
|
s: 4.0,
|
|
};
|
|
|
|
#[test]
|
|
fn test_into() {
|
|
let v = QUATERNION;
|
|
{
|
|
let v: [f32; 4] = v.into();
|
|
assert_eq!(v, [1.0, 2.0, 3.0, 4.0]);
|
|
}
|
|
{
|
|
let v: (f32, f32, f32, f32) = v.into();
|
|
assert_eq!(v, (1.0, 2.0, 3.0, 4.0));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_as_ref() {
|
|
let v = QUATERNION;
|
|
{
|
|
let v: &[f32; 4] = v.as_ref();
|
|
assert_eq!(v, &[1.0, 2.0, 3.0, 4.0]);
|
|
}
|
|
{
|
|
let v: &(f32, f32, f32, f32) = v.as_ref();
|
|
assert_eq!(v, &(1.0, 2.0, 3.0, 4.0));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_as_mut() {
|
|
let mut v = QUATERNION;
|
|
{
|
|
let v: &mut [f32; 4] = v.as_mut();
|
|
assert_eq!(v, &mut [1.0, 2.0, 3.0, 4.0]);
|
|
}
|
|
{
|
|
let v: &mut (f32, f32, f32, f32) = v.as_mut();
|
|
assert_eq!(v, &mut (1.0, 2.0, 3.0, 4.0));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from() {
|
|
assert_eq!(Quaternion::from([1.0, 2.0, 3.0, 4.0]), QUATERNION);
|
|
{
|
|
let v = &[1.0, 2.0, 3.0, 4.0];
|
|
let v: &Quaternion<_> = From::from(v);
|
|
assert_eq!(v, &QUATERNION);
|
|
}
|
|
{
|
|
let v = &mut [1.0, 2.0, 3.0, 4.0];
|
|
let v: &mut Quaternion<_> = From::from(v);
|
|
assert_eq!(v, &QUATERNION);
|
|
}
|
|
assert_eq!(Quaternion::from((1.0, 2.0, 3.0, 4.0)), QUATERNION);
|
|
{
|
|
let v = &(1.0, 2.0, 3.0, 4.0);
|
|
let v: &Quaternion<_> = From::from(v);
|
|
assert_eq!(v, &QUATERNION);
|
|
}
|
|
{
|
|
let v = &mut (1.0, 2.0, 3.0, 4.0);
|
|
let v: &mut Quaternion<_> = From::from(v);
|
|
assert_eq!(v, &QUATERNION);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_same() {
|
|
let q = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
assert_ulps_eq!(q, q.nlerp(q, 0.1234));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_start() {
|
|
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
assert_ulps_eq!(q, q.nlerp(r, 0.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_end() {
|
|
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
assert_ulps_eq!(r, q.nlerp(r, 1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_half() {
|
|
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected =
|
|
Quaternion::from([0.0, 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt()]);
|
|
assert_ulps_eq!(expected, q.nlerp(r, 0.5));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_quarter() {
|
|
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-1.0 / 13f64.sqrt(),
|
|
2.0 / 13f64.sqrt(),
|
|
2.0 / 13f64.sqrt(),
|
|
2.0 / 13f64.sqrt(),
|
|
]);
|
|
assert_ulps_eq!(expected, q.nlerp(r, 0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_zero_dot() {
|
|
let q = Quaternion::from([-0.5, -0.5, 0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-1.0 / 10f64.sqrt(),
|
|
-1.0 / 10f64.sqrt(),
|
|
2.0 / 10f64.sqrt(),
|
|
2.0 / 10f64.sqrt(),
|
|
]);
|
|
assert_ulps_eq!(expected, q.nlerp(r, 0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_negative_dot() {
|
|
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-2.0 / 13f64.sqrt(),
|
|
-2.0 / 13f64.sqrt(),
|
|
-2.0 / 13f64.sqrt(),
|
|
1.0 / 13f64.sqrt(),
|
|
]);
|
|
assert_ulps_eq!(expected, q.nlerp(r, 0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_opposite() {
|
|
let q = Quaternion::from([-0.5, -0.5, -0.5, -0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
assert_ulps_eq!(q, q.nlerp(r, 0.25));
|
|
assert_ulps_eq!(q, q.nlerp(r, 0.75));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nlerp_extrapolate() {
|
|
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-1.0 / 12f64.sqrt(),
|
|
-1.0 / 12f64.sqrt(),
|
|
-1.0 / 12f64.sqrt(),
|
|
3.0 / 12f64.sqrt(),
|
|
]);
|
|
assert_ulps_eq!(expected, q.nlerp(r, -1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_same() {
|
|
let q = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
assert_ulps_eq!(q, q.slerp(q, 0.1234));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_start() {
|
|
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
assert_ulps_eq!(q, q.slerp(r, 0.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_end() {
|
|
let q = Quaternion::from([0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), 0.0]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
assert_ulps_eq!(r, q.slerp(r, 1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_half() {
|
|
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected =
|
|
Quaternion::from([0.0, 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt(), 1.0 / 3f64.sqrt()]);
|
|
assert_ulps_eq!(expected, q.slerp(r, 0.5));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_quarter() {
|
|
let q = Quaternion::from([-0.5, 0.5, 0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-0.2588190451025208,
|
|
0.5576775358252053,
|
|
0.5576775358252053,
|
|
0.5576775358252053,
|
|
]);
|
|
assert_ulps_eq!(expected, q.slerp(r, 0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_zero_dot() {
|
|
let q = Quaternion::from([-0.5, -0.5, 0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-0.27059805007309845,
|
|
-0.27059805007309845,
|
|
0.6532814824381883,
|
|
0.6532814824381883,
|
|
]);
|
|
assert_ulps_eq!(expected, q.slerp(r, 0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_negative_dot() {
|
|
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([
|
|
-0.5576775358252053,
|
|
-0.5576775358252053,
|
|
-0.5576775358252053,
|
|
0.2588190451025208,
|
|
]);
|
|
assert_ulps_eq!(expected, q.slerp(r, 0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_opposite() {
|
|
let q = Quaternion::from([-0.5, -0.5, -0.5, -0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
assert_ulps_eq!(q, q.slerp(r, 0.25));
|
|
assert_ulps_eq!(q, q.slerp(r, 0.75));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_extrapolate() {
|
|
let q = Quaternion::from([-0.5, -0.5, -0.5, 0.5]);
|
|
let r = Quaternion::from([0.5, 0.5, 0.5, 0.5]);
|
|
|
|
let expected = Quaternion::from([0.0, 0.0, 0.0, 1.0]);
|
|
assert_ulps_eq!(expected, q.slerp(r, -1.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slerp_regression() {
|
|
let a = Quaternion::<f32>::new(0.00052311074, 0.9999999, 0.00014682197, -0.000016342687);
|
|
let b = Quaternion::<f32>::new(0.019973433, -0.99980056, -0.00015678025, 0.000013882192);
|
|
|
|
assert_ulps_eq!(a.slerp(b, 0.5).magnitude(), 1.0);
|
|
}
|
|
}
|