cgmath/src/math/quat.rs
2013-07-14 13:22:45 +10:00

337 lines
11 KiB
Rust

// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Quaternion type
use math::{Dimensioned, SwapComponents};
use math::{Mat3, ToMat3};
use math::Vec3;
// GLSL-style type aliases
pub type quat = Quat<f32>;
pub type dquat = Quat<f64>;
// Rust-style type aliases
pub type Quatf = Quat<float>;
pub type Quatf32 = Quat<f32>;
pub type Quatf64 = Quat<f64>;
/// A quaternion in scalar/vector form
#[deriving(Clone, Eq)]
pub struct Quat<T> { s: T, v: Vec3<T> }
impl_dimensioned!(Quat, T, 4)
impl_swap_components!(Quat)
impl_approx!(Quat { s, v })
pub trait ToQuat<T> {
pub fn to_quat(&self) -> Quat<T>;
}
impl<T> Quat<T> {
/// Construct the quaternion from one scalar component and three
/// imaginary components
///
/// # Arguments
///
/// - `w`: the scalar component
/// - `xi`: the fist imaginary component
/// - `yj`: the second imaginary component
/// - `zk`: the third imaginary component
#[inline]
pub fn new(w: T, xi: T, yj: T, zk: T) -> Quat<T> {
Quat::from_sv(w, Vec3::new(xi, yj, zk))
}
/// Construct the quaternion from a scalar and a vector
///
/// # Arguments
///
/// - `s`: the scalar component
/// - `v`: a vector containing the three imaginary components
#[inline]
pub fn from_sv(s: T, v: Vec3<T>) -> Quat<T> {
Quat { s: s, v: v }
}
}
impl<T:Clone + Float> Quat<T> {
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
#[inline]
pub fn identity() -> Quat<T> {
Quat::from_sv(one!(T), Vec3::zero())
}
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
#[inline]
pub fn zero() -> Quat<T> {
Quat::new(zero!(T), zero!(T), zero!(T), zero!(T))
}
#[inline]
pub fn from_angle_x(radians: T) -> Quat<T> {
Quat::new((radians / two!(T)).cos(), radians.sin(), zero!(T), zero!(T))
}
#[inline]
pub fn from_angle_y(radians: T) -> Quat<T> {
Quat::new((radians / two!(T)).cos(), zero!(T), radians.sin(), zero!(T))
}
#[inline]
pub fn from_angle_z(radians: T) -> Quat<T> {
Quat::new((radians / two!(T)).cos(), zero!(T), zero!(T), radians.sin())
}
pub fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Quat<T> {
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Conversion
let xdiv2 = radians_x / two!(T);
let ydiv2 = radians_y / two!(T);
let zdiv2 = radians_z / two!(T);
Quat::new(zdiv2.cos() * xdiv2.cos() * ydiv2.cos() + zdiv2.sin() * xdiv2.sin() * ydiv2.sin(),
zdiv2.sin() * xdiv2.cos() * ydiv2.cos() - zdiv2.cos() * xdiv2.sin() * ydiv2.sin(),
zdiv2.cos() * xdiv2.sin() * ydiv2.cos() + zdiv2.sin() * xdiv2.cos() * ydiv2.sin(),
zdiv2.cos() * xdiv2.cos() * ydiv2.sin() - zdiv2.sin() * xdiv2.sin() * ydiv2.cos())
}
#[inline]
pub fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Quat<T> {
let half = radians / two!(T);
Quat::from_sv(half.cos(), axis.mul_t(half.sin()))
}
pub fn get_angle_axis(&self) -> (T, Vec3<T>) {
fail!(~"Not yet implemented.")
}
/// The result of multiplying the quaternion a scalar
#[inline]
pub fn mul_t(&self, value: T) -> Quat<T> {
Quat::from_sv(self.s * value, self.v.mul_t(value))
}
/// The result of dividing the quaternion a scalar
#[inline]
pub fn div_t(&self, value: T) -> Quat<T> {
Quat::from_sv(self.s / value, self.v.div_t(value))
}
/// The result of multiplying the quaternion by a vector
#[inline]
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
let tmp = self.v.cross(vec).add_v(&vec.mul_t(self.s.clone()));
self.v.cross(&tmp).mul_t(two!(T)).add_v(vec)
}
/// The sum of this quaternion and `other`
#[inline]
pub fn add_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(*self.index(0) + *other.index(0),
*self.index(1) + *other.index(1),
*self.index(2) + *other.index(2),
*self.index(3) + *other.index(3))
}
/// The sum of this quaternion and `other`
#[inline]
pub fn sub_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(*self.index(0) - *other.index(0),
*self.index(1) - *other.index(1),
*self.index(2) - *other.index(2),
*self.index(3) - *other.index(3))
}
/// The the result of multipliplying the quaternion by `other`
pub fn mul_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
}
/// The dot product of the quaternion and `other`
#[inline]
pub fn dot(&self, other: &Quat<T>) -> T {
self.s * other.s + self.v.dot(&other.v)
}
/// The conjugate of the quaternion
#[inline]
pub fn conjugate(&self) -> Quat<T> {
Quat::from_sv(self.s.clone(), -self.v.clone())
}
/// The multiplicative inverse of the quaternion
#[inline]
pub fn inverse(&self) -> Quat<T> {
self.conjugate().div_t(self.magnitude2())
}
/// The squared magnitude of the quaternion. This is useful for
/// magnitude comparisons where the exact magnitude does not need to be
/// calculated.
#[inline]
pub fn magnitude2(&self) -> T {
self.s * self.s + self.v.magnitude2()
}
/// The magnitude of the quaternion
///
/// # Performance notes
///
/// For instances where the exact magnitude of the quaternion does not need
/// to be known, for example for quaternion-quaternion magnitude comparisons,
/// it is advisable to use the `magnitude2` method instead.
#[inline]
pub fn magnitude(&self) -> T {
self.magnitude2().sqrt()
}
/// The normalized quaternion
#[inline]
pub fn normalize(&self) -> Quat<T> {
self.mul_t(one!(T) / self.magnitude())
}
/// Normalised linear interpolation
///
/// # Return value
///
/// The intoperlated quaternion
pub fn nlerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
self.mul_t(one!(T) - amount).add_q(&other.mul_t(amount)).normalize()
}
}
impl<T:Clone + Num> ToMat3<T> for Quat<T> {
/// Convert the quaternion to a 3 x 3 rotation matrix
pub fn to_mat3(&self) -> Mat3<T> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
let _1: T = one!(T);
Mat3::new(_1 - yy2 - zz2, xy2 + sz2, xz2 - sy2,
xy2 - sz2, _1 - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, _1 - xx2 - yy2)
}
}
impl<T:Clone + Float> Neg<Quat<T>> for Quat<T> {
#[inline]
pub fn neg(&self) -> Quat<T> {
Quat::from_sv(-self.s, -self.v)
}
}
impl<T:Clone + Float> Quat<T> {
#[inline]
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Quat<T> {
Mat3::look_at(dir, up).to_quat()
}
#[inline]
pub fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Quat<T> {
Mat3::from_axes(x, y, z).to_quat()
}
/// Spherical Linear Intoperlation
///
/// Perform a spherical linear interpolation between the quaternion and
/// `other`. Both quaternions should be normalized first.
///
/// # Return value
///
/// The intoperlated quaternion
///
/// # Performance notes
///
/// The `acos` operation used in `slerp` is an expensive operation, so unless
/// your quarternions a far away from each other it's generally more advisable
/// to use `nlerp` when you know your rotations are going to be small.
///
/// - [Understanding Slerp, Then Not Using It]
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial]
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
pub fn slerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
use std::num::cast;
let dot = self.dot(other);
let dot_threshold = cast(0.9995);
// if quaternions are close together use `nlerp`
if dot > dot_threshold {
self.nlerp(other, amount)
} else {
// stay within the domain of acos()
let robust_dot = dot.clamp(&-one!(T), &one!(T));
let theta_0 = robust_dot.acos(); // the angle between the quaternions
let theta = theta_0 * amount; // the fraction of theta specified by `amount`
let q = other.sub_q(&self.mul_t(robust_dot))
.normalize();
self.mul_t(theta.cos())
.add_q(&q.mul_t(theta.sin()))
}
}
}
#[cfg(test)]
mod tests {
use math::mat::*;
use math::quat::*;
use math::vec::*;
#[test]
fn test_from_angle_axis() {
let v = Vec3::new(1f, 0f, 0f);
let q = Quat::from_angle_axis((-45f).to_radians(), &Vec3::new(0f, 0f, -1f));
// http://www.wolframalpha.com/input/?i={1,0}+rotate+-45+degrees
assert_approx_eq!(q.mul_v(&v), Vec3::new(1f/2f.sqrt(), 1f/2f.sqrt(), 0f));
assert_eq!(q.mul_v(&v).magnitude(), v.magnitude());
assert_approx_eq!(q.to_mat3(), Mat3::new( 1f/2f.sqrt(), 1f/2f.sqrt(), 0f,
-1f/2f.sqrt(), 1f/2f.sqrt(), 0f,
0f, 0f, 1f));
}
#[test]
fn test_approx_eq() {
assert!(!Quat::new::<float>(0.000001, 0.000001, 0.000001, 0.000001)
.approx_eq(&Quat::new::<float>(0.0, 0.0, 0.0, 0.0)));
assert!(Quat::new::<float>(0.0000001, 0.0000001, 0.0000001, 0.0000001)
.approx_eq(&Quat::new::<float>(0.0, 0.0, 0.0, 0.0)));
}
}