cgmath/tests/matrix.rs
2015-12-06 19:36:38 +11:00

410 lines
17 KiB
Rust

// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate cgmath;
use cgmath::*;
use std::f64;
pub mod matrix2 {
use cgmath::*;
pub static A: Matrix2<f64> = Matrix2 { x: Vector2 { x: 1.0f64, y: 3.0f64 },
y: Vector2 { x: 2.0f64, y: 4.0f64 } };
pub static B: Matrix2<f64> = Matrix2 { x: Vector2 { x: 2.0f64, y: 4.0f64 },
y: Vector2 { x: 3.0f64, y: 5.0f64 } };
pub static C: Matrix2<f64> = Matrix2 { x: Vector2 { x: 2.0f64, y: 1.0f64 },
y: Vector2 { x: 1.0f64, y: 2.0f64 } };
pub static V: Vector2<f64> = Vector2 { x: 1.0f64, y: 2.0f64 };
pub static F: f64 = 0.5;
}
pub mod matrix3 {
use cgmath::*;
pub static A: Matrix3<f64> = Matrix3 { x: Vector3 { x: 1.0f64, y: 4.0f64, z: 7.0f64 },
y: Vector3 { x: 2.0f64, y: 5.0f64, z: 8.0f64 },
z: Vector3 { x: 3.0f64, y: 6.0f64, z: 9.0f64 } };
pub static B: Matrix3<f64> = Matrix3 { x: Vector3 { x: 2.0f64, y: 5.0f64, z: 8.0f64 },
y: Vector3 { x: 3.0f64, y: 6.0f64, z: 9.0f64 },
z: Vector3 { x: 4.0f64, y: 7.0f64, z: 10.0f64 } };
pub static C: Matrix3<f64> = Matrix3 { x: Vector3 { x: 2.0f64, y: 4.0f64, z: 6.0f64 },
y: Vector3 { x: 0.0f64, y: 2.0f64, z: 4.0f64 },
z: Vector3 { x: 0.0f64, y: 0.0f64, z: 1.0f64 } };
pub static D: Matrix3<f64> = Matrix3 { x: Vector3 { x: 3.0f64, y: 2.0f64, z: 1.0f64 },
y: Vector3 { x: 2.0f64, y: 3.0f64, z: 2.0f64 },
z: Vector3 { x: 1.0f64, y: 2.0f64, z: 3.0f64 } };
pub static V: Vector3<f64> = Vector3 { x: 1.0f64, y: 2.0f64, z: 3.0f64 };
pub static F: f64 = 0.5;
}
pub mod matrix4 {
use cgmath::*;
pub static A: Matrix4<f64> = Matrix4 { x: Vector4 { x: 1.0f64, y: 5.0f64, z: 9.0f64, w: 13.0f64 },
y: Vector4 { x: 2.0f64, y: 6.0f64, z: 10.0f64, w: 14.0f64 },
z: Vector4 { x: 3.0f64, y: 7.0f64, z: 11.0f64, w: 15.0f64 },
w: Vector4 { x: 4.0f64, y: 8.0f64, z: 12.0f64, w: 16.0f64 } };
pub static B: Matrix4<f64> = Matrix4 { x: Vector4 { x: 2.0f64, y: 6.0f64, z: 10.0f64, w: 14.0f64 },
y: Vector4 { x: 3.0f64, y: 7.0f64, z: 11.0f64, w: 15.0f64 },
z: Vector4 { x: 4.0f64, y: 8.0f64, z: 12.0f64, w: 16.0f64 },
w: Vector4 { x: 5.0f64, y: 9.0f64, z: 13.0f64, w: 17.0f64 } };
pub static C: Matrix4<f64> = Matrix4 { x: Vector4 { x: 3.0f64, y: 2.0f64, z: 1.0f64, w: 1.0f64 },
y: Vector4 { x: 2.0f64, y: 3.0f64, z: 2.0f64, w: 2.0f64 },
z: Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 3.0f64 },
w: Vector4 { x: 0.0f64, y: 1.0f64, z: 1.0f64, w: 0.0f64 } };
pub static D: Matrix4<f64> = Matrix4 { x: Vector4 { x: 4.0f64, y: 3.0f64, z: 2.0f64, w: 1.0f64 },
y: Vector4 { x: 3.0f64, y: 4.0f64, z: 3.0f64, w: 2.0f64 },
z: Vector4 { x: 2.0f64, y: 3.0f64, z: 4.0f64, w: 3.0f64 },
w: Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 4.0f64 } };
pub static V: Vector4<f64> = Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 4.0f64 };
pub static F: f64 = 0.5;
}
#[test]
fn test_neg() {
// Matrix2
assert_eq!(-matrix2::A,
Matrix2::new(-1.0f64, -3.0f64,
-2.0f64, -4.0f64));
// Matrix3
assert_eq!(-matrix3::A,
Matrix3::new(-1.0f64, -4.0f64, -7.0f64,
-2.0f64, -5.0f64, -8.0f64,
-3.0f64, -6.0f64, -9.0f64));
// Matrix4
assert_eq!(-matrix4::A,
Matrix4::new(-1.0f64, -5.0f64, -9.0f64, -13.0f64,
-2.0f64, -6.0f64, -10.0f64, -14.0f64,
-3.0f64, -7.0f64, -11.0f64, -15.0f64,
-4.0f64, -8.0f64, -12.0f64, -16.0f64));
}
#[test]
fn test_mul_s() {
// Matrix2
assert_eq!(matrix2::A.mul_s(matrix2::F),
Matrix2::new(0.5f64, 1.5f64,
1.0f64, 2.0f64));
let mut mut_a = matrix2::A;
mut_a.mul_self_s(matrix2::F);
assert_eq!(mut_a, matrix2::A.mul_s(matrix2::F));
// Matrix3
assert_eq!(matrix3::A.mul_s(matrix3::F),
Matrix3::new(0.5f64, 2.0f64, 3.5f64,
1.0f64, 2.5f64, 4.0f64,
1.5f64, 3.0f64, 4.5f64));
let mut mut_a = matrix3::A;
mut_a.mul_self_s(matrix3::F);
assert_eq!(mut_a, matrix3::A.mul_s(matrix3::F));
// Matrix4
assert_eq!(matrix4::A.mul_s(matrix4::F),
Matrix4::new(0.5f64, 2.5f64, 4.5f64, 6.5f64,
1.0f64, 3.0f64, 5.0f64, 7.0f64,
1.5f64, 3.5f64, 5.5f64, 7.5f64,
2.0f64, 4.0f64, 6.0f64, 8.0f64));
let mut mut_a = matrix4::A;
mut_a.mul_self_s(matrix4::F);
assert_eq!(mut_a, matrix4::A.mul_s(matrix4::F));
}
#[test]
fn test_add_m() {
// Matrix2
assert_eq!(matrix2::A.add_m(&matrix2::B),
Matrix2::new(3.0f64, 7.0f64,
5.0f64, 9.0f64));
let mut mut_a = matrix2::A;
mut_a.add_self_m(&matrix2::B);
assert_eq!(mut_a, matrix2::A.add_m(&matrix2::B));
assert_eq!(mut_a, &matrix2::A + &matrix2::B);
// Matrix3
assert_eq!(matrix3::A.add_m(&matrix3::B),
Matrix3::new(3.0f64, 9.0f64, 15.0f64,
5.0f64, 11.0f64, 17.0f64,
7.0f64, 13.0f64, 19.0f64));
let mut mut_a = matrix3::A;
mut_a.add_self_m(&matrix3::B);
assert_eq!(mut_a, matrix3::A.add_m(&matrix3::B));
assert_eq!(mut_a, &matrix3::A + &matrix3::B);
// Matrix4
assert_eq!(matrix4::A.add_m(&matrix4::B),
Matrix4::new(3.0f64, 11.0f64, 19.0f64, 27.0f64,
5.0f64, 13.0f64, 21.0f64, 29.0f64,
7.0f64, 15.0f64, 23.0f64, 31.0f64,
9.0f64, 17.0f64, 25.0f64, 33.0f64));
let mut mut_a = matrix4::A;
mut_a.add_self_m(&matrix4::B);
assert_eq!(mut_a, matrix4::A.add_m(&matrix4::B));
assert_eq!(mut_a, &matrix4::A + &matrix4::B);
}
#[test]
fn test_sub_m() {
// Matrix2
assert_eq!(matrix2::A.sub_m(&matrix2::B),
Matrix2::new(-1.0f64, -1.0f64,
-1.0f64, -1.0f64));
let mut mut_a = matrix2::A;
mut_a.sub_self_m(&matrix2::B);
assert_eq!(mut_a, matrix2::A.sub_m(&matrix2::B));
assert_eq!(matrix2::A.sub_m(&matrix2::B), &matrix2::A - &matrix2::B);
// Matrix3
assert_eq!(matrix3::A.sub_m(&matrix3::B),
Matrix3::new(-1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64));
let mut mut_a = matrix3::A;
mut_a.sub_self_m(&matrix3::B);
assert_eq!(mut_a, matrix3::A.sub_m(&matrix3::B));
assert_eq!(matrix3::A.sub_m(&matrix3::B), &matrix3::A - &matrix3::B);
// Matrix4
assert_eq!(matrix4::A.sub_m(&matrix4::B),
Matrix4::new(-1.0f64, -1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64, -1.0f64,
-1.0f64, -1.0f64, -1.0f64, -1.0f64));
let mut mut_a = matrix4::A;
mut_a.sub_self_m(&matrix4::B);
assert_eq!(mut_a, matrix4::A.sub_m(&matrix4::B));
assert_eq!(matrix4::A.sub_m(&matrix4::B), &matrix4::A - &matrix4::B);
}
#[test]
fn test_mul_v() {
assert_eq!(matrix2::A.mul_v(matrix2::V), Vector2::new(5.0f64, 11.0f64));
assert_eq!(matrix3::A.mul_v(matrix3::V), Vector3::new(14.0f64, 32.0f64, 50.0f64));
assert_eq!(matrix4::A.mul_v(matrix4::V), Vector4::new(30.0f64, 70.0f64, 110.0f64, 150.0f64));
}
#[test]
fn test_mul_m() {
assert_eq!(matrix2::A.mul_m(&matrix2::B),
Matrix2::new(10.0f64, 22.0f64,
13.0f64, 29.0f64));
assert_eq!(matrix3::A.mul_m(&matrix3::B),
Matrix3::new(36.0f64, 81.0f64, 126.0f64,
42.0f64, 96.0f64, 150.0f64,
48.0f64, 111.0f64, 174.0f64));
assert_eq!(matrix4::A.mul_m(&matrix4::B),
Matrix4::new(100.0f64, 228.0f64, 356.0f64, 484.0f64,
110.0f64, 254.0f64, 398.0f64, 542.0f64,
120.0f64, 280.0f64, 440.0f64, 600.0f64,
130.0f64, 306.0f64, 482.0f64, 658.0f64));
assert_eq!(matrix2::A.mul_m(&matrix2::B), &matrix2::A * &matrix2::B);
assert_eq!(matrix3::A.mul_m(&matrix3::B), &matrix3::A * &matrix3::B);
assert_eq!(matrix4::A.mul_m(&matrix4::B), &matrix4::A * &matrix4::B);
}
#[test]
fn test_determinant() {
assert_eq!(matrix2::A.determinant(), -2.0f64);
assert_eq!(matrix3::A.determinant(), 0.0f64);
assert_eq!(matrix4::A.determinant(), 0.0f64);
}
#[test]
fn test_trace() {
assert_eq!(matrix2::A.trace(), 5.0f64);
assert_eq!(matrix3::A.trace(), 15.0f64);
assert_eq!(matrix4::A.trace(), 34.0f64);
}
#[test]
fn test_transpose() {
// Matrix2
assert_eq!(matrix2::A.transpose(),
Matrix2::<f64>::new(1.0f64, 2.0f64,
3.0f64, 4.0f64));
let mut mut_a = matrix2::A;
mut_a.transpose_self();
assert_eq!(mut_a, matrix2::A.transpose());
// Matrix3
assert_eq!(matrix3::A.transpose(),
Matrix3::<f64>::new(1.0f64, 2.0f64, 3.0f64,
4.0f64, 5.0f64, 6.0f64,
7.0f64, 8.0f64, 9.0f64));
let mut mut_a = matrix3::A;
mut_a.transpose_self();
assert_eq!(mut_a, matrix3::A.transpose());
// Matrix4
assert_eq!(matrix4::A.transpose(),
Matrix4::<f64>::new( 1.0f64, 2.0f64, 3.0f64, 4.0f64,
5.0f64, 6.0f64, 7.0f64, 8.0f64,
9.0f64, 10.0f64, 11.0f64, 12.0f64,
13.0f64, 14.0f64, 15.0f64, 16.0f64));
let mut mut_a = matrix4::A;
mut_a.transpose_self();
assert_eq!(mut_a, matrix4::A.transpose());
}
#[test]
fn test_invert() {
// Matrix2
assert!(Matrix2::<f64>::identity().invert().unwrap().is_identity());
assert_eq!(matrix2::A.invert().unwrap(),
Matrix2::new(-2.0f64, 1.5f64,
1.0f64, -0.5f64));
assert!(Matrix2::new(0.0f64, 2.0f64,
0.0f64, 5.0f64).invert().is_none());
let mut mut_a = matrix2::A;
mut_a.invert_self();
assert_eq!(mut_a, matrix2::A.invert().unwrap());
// Matrix3
assert!(Matrix3::<f64>::identity().invert().unwrap().is_identity());
assert_eq!(matrix3::A.invert(), None);
assert_eq!(matrix3::C.invert().unwrap(),
Matrix3::new(0.5f64, -1.0f64, 1.0f64,
0.0f64, 0.5f64, -2.0f64,
0.0f64, 0.0f64, 1.0f64));
let mut mut_c = matrix3::C;
mut_c.invert_self();
assert_eq!(mut_c, matrix3::C.invert().unwrap());
// Matrix4
assert!(Matrix4::<f64>::identity().invert().unwrap().is_identity());
assert!(matrix4::C.invert().unwrap().approx_eq(&
Matrix4::new( 5.0f64, -4.0f64, 1.0f64, 0.0f64,
-4.0f64, 8.0f64, -4.0f64, 0.0f64,
4.0f64, -8.0f64, 4.0f64, 8.0f64,
-3.0f64, 4.0f64, 1.0f64, -8.0f64).mul_s(0.125f64)));
let mut mut_c = matrix4::C;
mut_c.invert_self();
assert_eq!(mut_c, matrix4::C.invert().unwrap());
let mat_c = Matrix4::new(-0.131917f64, -0.76871f64, 0.625846f64, 0.0f64,
-0., 0.631364f64, 0.775487f64, 0.0f64,
-0.991261f64, 0.1023f64, -0.083287f64, 0.0f64,
0., -1.262728f64, -1.550973f64, 1.0f64);
assert!(mat_c.invert().unwrap().mul_m(&mat_c).is_identity());
let mat_d = Matrix4::new( 0.065455f64, -0.720002f64, 0.690879f64, 0.0f64,
-0., 0.692364f64, 0.721549f64, 0.0f64,
-0.997856f64, -0.047229f64, 0.045318f64, 0.0f64,
0., -1.384727f64, -1.443098f64, 1.0f64);
assert!(mat_d.invert().unwrap().mul_m(&mat_d).is_identity());
let mat_e = Matrix4::new( 0.409936f64, 0.683812f64, -0.603617f64, 0.0f64,
0., 0.661778f64, 0.7497f64, 0.0f64,
0.912114f64, -0.307329f64, 0.271286f64, 0.0f64,
-0., -1.323555f64, -1.499401f64, 1.0f64);
assert!(mat_e.invert().unwrap().mul_m(&mat_e).is_identity());
let mat_f = Matrix4::new(-0.160691f64, -0.772608f64, 0.614211f64, 0.0f64,
-0., 0.622298f64, 0.78278f64, 0.0f64,
-0.987005f64, 0.125786f64, -0.099998f64, 0.0f64,
0., -1.244597f64, -1.565561f64, 1.0f64);
assert!(mat_f.invert().unwrap().mul_m(&mat_f).is_identity());
}
#[test]
fn test_from_translation() {
let mat = Matrix4::from_translation(Vector3::new(1.0f64, 2.0f64, 3.0f64));
let vertex = Vector4::new(0.0f64, 0.0f64, 0.0f64, 1.0f64);
let res = mat.mul_v(vertex);
assert_eq!(res, Vector4::new(1., 2., 3., 1.));
}
#[test]
fn test_predicates() {
// Matrix2
assert!(Matrix2::<f64>::identity().is_identity());
assert!(Matrix2::<f64>::identity().is_symmetric());
assert!(Matrix2::<f64>::identity().is_diagonal());
assert!(Matrix2::<f64>::identity().is_invertible());
assert!(!matrix2::A.is_identity());
assert!(!matrix2::A.is_symmetric());
assert!(!matrix2::A.is_diagonal());
assert!(matrix2::A.is_invertible());
assert!(!matrix2::C.is_identity());
assert!(matrix2::C.is_symmetric());
assert!(!matrix2::C.is_diagonal());
assert!(matrix2::C.is_invertible());
assert!(Matrix2::from_value(6.0f64).is_diagonal());
// Matrix3
assert!(Matrix3::<f64>::identity().is_identity());
assert!(Matrix3::<f64>::identity().is_symmetric());
assert!(Matrix3::<f64>::identity().is_diagonal());
assert!(Matrix3::<f64>::identity().is_invertible());
assert!(!matrix3::A.is_identity());
assert!(!matrix3::A.is_symmetric());
assert!(!matrix3::A.is_diagonal());
assert!(!matrix3::A.is_invertible());
assert!(!matrix3::D.is_identity());
assert!(matrix3::D.is_symmetric());
assert!(!matrix3::D.is_diagonal());
assert!(matrix3::D.is_invertible());
assert!(Matrix3::from_value(6.0f64).is_diagonal());
// Matrix4
assert!(Matrix4::<f64>::identity().is_identity());
assert!(Matrix4::<f64>::identity().is_symmetric());
assert!(Matrix4::<f64>::identity().is_diagonal());
assert!(Matrix4::<f64>::identity().is_invertible());
assert!(!matrix4::A.is_identity());
assert!(!matrix4::A.is_symmetric());
assert!(!matrix4::A.is_diagonal());
assert!(!matrix4::A.is_invertible());
assert!(!matrix4::D.is_identity());
assert!(matrix4::D.is_symmetric());
assert!(!matrix4::D.is_diagonal());
assert!(matrix4::D.is_invertible());
assert!(Matrix4::from_value(6.0f64).is_diagonal());
}
#[test]
fn test_from_angle() {
// Rotate the vector (1, 0) by π/2 radians to the vector (0, 1)
let rot1 = Matrix2::from_angle(rad(0.5f64 * f64::consts::PI));
assert!(rot1.mul_v(Vector2::unit_x()).approx_eq(&Vector2::unit_y()));
// Rotate the vector (-1, 0) by -π/2 radians to the vector (0, 1)
let rot2 = -rot1;
assert!(rot2.mul_v(-Vector2::unit_x()).approx_eq(&Vector2::unit_y()));
// Rotate the vector (1, 1) by π radians to the vector (-1, -1)
let rot3: Matrix2<f64> = Matrix2::from_angle(rad(f64::consts::PI));
assert!(rot3.mul_v(Vector2::new(1.0, 1.0)).approx_eq(&Vector2::new(-1.0, -1.0)));
}