cgmath/tests/quaternion.rs

260 lines
8.2 KiB
Rust

// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[macro_use]
extern crate approx;
#[macro_use]
extern crate cgmath;
macro_rules! impl_test_mul {
($s:expr, $v:expr) => (
// point * scalar ops
assert_eq!($v * $s, Quaternion::from_sv($v.s * $s, $v.v * $s));
assert_eq!($s * $v, Quaternion::from_sv($s * $v.s, $s * $v.v));
assert_eq!(&$v * $s, $v * $s);
assert_eq!($s * &$v, $s * $v);
// commutativity
assert_eq!($v * $s, $s * $v);
)
}
macro_rules! impl_test_div {
($s:expr, $v:expr) => (
// point / scalar ops
assert_eq!($v / $s, Quaternion::from_sv($v.s / $s, $v.v / $s));
assert_eq!($s / $v, Quaternion::from_sv($s / $v.s, $s / $v.v));
assert_eq!(&$v / $s, $v / $s);
assert_eq!($s / &$v, $s / $v);
)
}
mod operators {
use cgmath::*;
#[test]
fn test_mul() {
impl_test_mul!(2.0f32, Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(1f32) }));
}
#[test]
fn test_div() {
impl_test_div!(2.0f32, Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(1f32) }));
}
}
mod to_from_euler {
use std::f32;
use cgmath::*;
fn check_euler(rotation: Euler<Rad<f32>>) {
assert_relative_eq!(Euler::from(Quaternion::from(rotation)), rotation, epsilon = 0.001);
}
const HPI: f32 = f32::consts::FRAC_PI_2;
#[test] fn test_zero() { check_euler(Euler { x: Rad( 0f32), y: Rad( 0f32), z: Rad( 0f32) }); }
#[test] fn test_yaw_pos_1() { check_euler(Euler { x: Rad( 0f32), y: Rad( 1f32), z: Rad( 0f32) }); }
#[test] fn test_yaw_neg_1() { check_euler(Euler { x: Rad( 0f32), y: Rad(-1f32), z: Rad( 0f32) }); }
#[test] fn test_pitch_pos_1() { check_euler(Euler { x: Rad( 1f32), y: Rad( 0f32), z: Rad( 0f32) }); }
#[test] fn test_pitch_neg_1() { check_euler(Euler { x: Rad(-1f32), y: Rad( 0f32), z: Rad( 0f32) }); }
#[test] fn test_roll_pos_1() { check_euler(Euler { x: Rad( 0f32), y: Rad( 0f32), z: Rad( 1f32) }); }
#[test] fn test_roll_neg_1() { check_euler(Euler { x: Rad( 0f32), y: Rad( 0f32), z: Rad(-1f32) }); }
#[test] fn test_pitch_yaw_roll_pos_1() { check_euler(Euler { x: Rad( 1f32), y: Rad( 1f32), z: Rad( 1f32) }); }
#[test] fn test_pitch_yaw_roll_neg_1() { check_euler(Euler { x: Rad(-1f32), y: Rad(-1f32), z: Rad(-1f32) }); }
#[test] fn test_pitch_yaw_roll_pos_hp() { check_euler(Euler { x: Rad( 0f32), y: Rad( HPI), z: Rad( 1f32) }); }
#[test] fn test_pitch_yaw_roll_neg_hp() { check_euler(Euler { x: Rad( 0f32), y: Rad( -HPI), z: Rad( 1f32) }); }
}
mod from {
mod matrix3 {
use cgmath::*;
fn check_with_euler(x: Rad<f32>, y: Rad<f32>, z: Rad<f32>) {
let matrix3 = Matrix3::from(Euler { x: x, y: y, z: z });
let quaternion = Quaternion::from(matrix3);
let quaternion_matrix3 = Matrix3::from(quaternion);
assert_ulps_eq!(matrix3, quaternion_matrix3);
}
// triggers: trace >= S::zero()
#[test]
fn test_positive_trace() {
check_with_euler(Rad(0.0f32), Rad(0.0), Rad(0.0f32));
}
// triggers: (mat[0][0] > mat[1][1]) && (mat[0][0] > mat[2][2])
#[test]
fn test_xx_maximum() {
check_with_euler(Rad(2.0f32), Rad(1.0), Rad(-1.2f32));
}
// triggers: mat[1][1] > mat[2][2]
#[test]
fn test_yy_maximum() {
check_with_euler(Rad(2.0f32), Rad(1.0), Rad(3.0f32));
}
// base case
#[test]
fn test_zz_maximum() {
check_with_euler(Rad(1.0f32), Rad(1.0), Rad(3.0f32));
}
}
}
mod arc {
use cgmath::*;
#[inline]
fn test(src: Vector3<f32>, dst: Vector3<f32>) {
let q = Quaternion::from_arc(src, dst, None);
let v = q.rotate_vector(src);
assert_ulps_eq!(v.normalize(), dst.normalize());
}
#[test]
fn test_same() {
let v = Vector3::unit_x();
let q = Quaternion::from_arc(v, v, None);
assert_eq!(q, Quaternion::new(1.0, 0.0, 0.0, 0.0));
}
#[test]
fn test_opposite() {
let v = Vector3::unit_x();
test(v, -v);
}
#[test]
fn test_random() {
test(vec3(1.0, 2.0, 3.0), vec3(-4.0, 5.0, -6.0));
}
#[test]
fn test_ortho() {
let q: Quaternion<f32> = Quaternion::from_arc(Vector3::unit_x(), Vector3::unit_y(), None);
let q2 = Quaternion::from_axis_angle(Vector3::unit_z(), Rad::turn_div_4());
assert_ulps_eq!(q, q2);
}
}
mod rotate_from_euler {
use cgmath::*;
#[test]
fn test_x() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Quaternion::from(Euler::new(Deg(90.0), Deg(0.0), Deg(0.0)));
assert_ulps_eq!(vec3(0.0, -1.0, 0.0), rot * vec);
let rot = Quaternion::from(Euler::new(Deg(-90.0), Deg(0.0), Deg(0.0)));
assert_ulps_eq!(vec3(0.0, 1.0, 0.0), rot * vec);
}
#[test]
fn test_y() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Quaternion::from(Euler::new(Deg(0.0), Deg(90.0), Deg(0.0)));
assert_ulps_eq!(vec3(1.0, 0.0, 0.0), rot * vec);
let rot = Quaternion::from(Euler::new(Deg(0.0), Deg(-90.0), Deg(0.0)));
assert_ulps_eq!(vec3(-1.0, 0.0, 0.0), rot * vec);
}
#[test]
fn test_z() {
let vec = vec3(1.0, 0.0, 0.0);
let rot = Quaternion::from(Euler::new(Deg(0.0), Deg(0.0), Deg(90.0)));
assert_ulps_eq!(vec3(0.0, 1.0, 0.0), rot * vec);
let rot = Quaternion::from(Euler::new(Deg(0.0), Deg(0.0), Deg(-90.0)));
assert_ulps_eq!(vec3(0.0, -1.0, 0.0), rot * vec);
}
// tests that the Y rotation is done after the X
#[test]
fn test_x_then_y() {
let vec = vec3(0.0, 1.0, 0.0);
let rot = Quaternion::from(Euler::new(Deg(90.0), Deg(90.0), Deg(0.0)));
assert_ulps_eq!(vec3(0.0, 0.0, 1.0), rot * vec);
}
// tests that the Z rotation is done after the Y
#[test]
fn test_y_then_z() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Quaternion::from(Euler::new(Deg(0.0), Deg(90.0), Deg(90.0)));
assert_ulps_eq!(vec3(1.0, 0.0, 0.0), rot * vec);
}
}
mod rotate_from_axis_angle {
use cgmath::*;
#[test]
fn test_x() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Quaternion::from_angle_x(Deg(90.0));
assert_ulps_eq!(vec3(0.0, -1.0, 0.0), rot * vec);
}
#[test]
fn test_y() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Quaternion::from_angle_y(Deg(90.0));
assert_ulps_eq!(vec3(1.0, 0.0, 0.0), rot * vec);
}
#[test]
fn test_z() {
let vec = vec3(1.0, 0.0, 0.0);
let rot = Quaternion::from_angle_z(Deg(90.0));
assert_ulps_eq!(vec3(0.0, 1.0, 0.0), rot * vec);
}
#[test]
fn test_xy() {
let vec = vec3(0.0, 0.0, 1.0);
let rot = Quaternion::from_axis_angle(vec3(1.0, 1.0, 0.0).normalize(), Deg(90.0));
assert_ulps_eq!(vec3(2.0f32.sqrt() / 2.0, -2.0f32.sqrt() / 2.0, 0.0), rot * vec);
}
#[test]
fn test_yz() {
let vec = vec3(1.0, 0.0, 0.0);
let rot = Quaternion::from_axis_angle(vec3(0.0, 1.0, 1.0).normalize(), Deg(-90.0));
assert_ulps_eq!(vec3(0.0, -2.0f32.sqrt() / 2.0, 2.0f32.sqrt() / 2.0), rot * vec);
}
#[test]
fn test_xz() {
let vec = vec3(0.0, 1.0, 0.0);
let rot = Quaternion::from_axis_angle(vec3(1.0, 0.0, 1.0).normalize(), Deg(90.0));
assert_ulps_eq!(vec3(-2.0f32.sqrt() / 2.0, 0.0, 2.0f32.sqrt() / 2.0), rot * vec);
}
}