evdev-rs/src/lib.rs

1036 lines
35 KiB
Rust
Raw Normal View History

//! Linux event device handling.
//!
//! The Linux kernel's "evdev" subsystem exposes input devices to userspace in a generic,
//! consistent way. I'll try to explain the device model as completely as possible. The upstream
//! kernel documentation is split across two files:
//!
//! - https://www.kernel.org/doc/Documentation/input/event-codes.txt
//! - https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt
//!
//! Devices can expose a few different kinds of events, specified by the `Types` bitflag. Each
//! event type (except for RELATIVE and SYNCHRONIZATION) also has some associated state. See the documentation for
//! `Types` on what each type corresponds to.
//!
2015-07-21 09:15:21 +00:00
//! This state can be queried. For example, the `DeviceState::led_vals` field will tell you which
//! LEDs are currently lit on the device. This state is not automatically synchronized with the
//! kernel. However, as the application reads events, this state will be updated if the event is
//! newer than the state timestamp (maintained internally). Additionally, you can call
//! `Device::sync_state` to explicitly synchronize with the kernel state.
//!
2015-07-21 09:15:21 +00:00
//! As the state changes, the kernel will write events into a ring buffer. The application can read
//! from this ring buffer, thus retreiving events. However, if the ring buffer becomes full, the
//! kernel will *drop* every event in the ring buffer and leave an event telling userspace that it
//! did so. At this point, if the application were using the events it received to update its
//! internal idea of what state the hardware device is in, it will be wrong: it is missing some
//! events. This library tries to ease that pain, but it is best-effort. Events can never be
//! recovered once lost. For example, if a switch is toggled twice, there will be two switch events
//! in the buffer. However if the kernel needs to drop events, when the device goes to synchronize
//! state with the kernel, only one (or zero, if the switch is in the same state as it was before
//! the sync) switch events will be emulated.
//!
2015-07-21 09:15:21 +00:00
//! It is recommended that you dedicate a thread to processing input events, or use epoll with the
//! fd returned by `Device::fd` to process events when they are ready.
#![cfg(any(target_os = "linux", target_os = "android"))]
#[macro_use]
extern crate bitflags;
extern crate ioctl;
extern crate libc;
extern crate errno;
extern crate fixedbitset;
extern crate num;
use std::os::unix::io::*;
use std::os::unix::ffi::*;
use std::path::Path;
use std::ffi::CString;
use std::mem::size_of;
use fixedbitset::FixedBitSet;
2015-07-19 21:56:44 +00:00
pub use Key::*;
pub use FFEffect::*;
pub use Synchronization::*;
2015-07-21 09:16:30 +00:00
#[link(name = "rt")]
extern {
fn clock_gettime(clkid: libc::c_int, res: *mut libc::timespec);
}
#[derive(Debug)]
pub enum Error {
NulError(std::ffi::NulError),
LibcError(errno::Errno),
IoctlError(&'static str, errno::Errno),
}
impl From<std::ffi::NulError> for Error {
fn from(e: std::ffi::NulError) -> Error {
Error::NulError(e)
}
}
impl From<errno::Errno> for Error {
fn from(e: errno::Errno) -> Error {
Error::LibcError(e)
}
}
macro_rules! do_ioctl {
($name:ident($($arg:expr),+)) => {{
let rc = unsafe { ::ioctl::$name($($arg,)+) };
if rc < 0 {
return Err(Error::IoctlError(stringify!($name), errno::errno()))
}
rc
}}
}
struct Fd(libc::c_int);
impl Drop for Fd {
fn drop(&mut self) {
unsafe { libc::close(self.0); }
}
}
impl std::ops::Deref for Fd {
type Target = libc::c_int;
fn deref(&self) -> &libc::c_int {
&self.0
}
}
bitflags! {
/// Event types supported by the device.
flags Types: u32 {
/// A bookkeeping event. Usually not important to applications.
const SYNCHRONIZATION = 1 << 0x00,
/// A key changed state. A key, or button, is usually a momentary switch (in the circuit sense). It has two
/// states: down, or up. There are events for when keys are pressed (become down) and
/// released (become up). There are also "key repeats", where multiple events are sent
/// while a key is down.
const KEY = 1 << 0x01,
/// Movement on a relative axis. There is no absolute coordinate frame, just the fact that
/// there was a change of a certain amount of units. Used for things like mouse movement or
/// scroll wheels.
const RELATIVE = 1 << 0x02,
/// Movement on an absolute axis. Used for things such as touch events and joysticks.
const ABSOLUTE = 1 << 0x03,
/// Miscellaneous events that don't fall into other categories. I'm not quite sure when
/// these happen or what they correspond to.
const MISC = 1 << 0x04,
/// Change in a switch value. Switches are boolean conditions and usually correspond to a
/// toggle switch of some kind in hardware.
const SWITCH = 1 << 0x05,
/// An LED was toggled.
const LED = 1 << 0x11,
/// A sound was made.
const SOUND = 1 << 0x12,
/// There are no events of this type, to my knowledge, but represents metadata about key
/// repeat configuration.
const REPEAT = 1 << 0x14,
/// I believe there are no events of this type, but rather this is used to represent that
/// the device can create haptic effects.
const FORCEFEEDBACK = 1 << 0x15,
/// I think this is unused?
const POWER = 1 << 0x16,
/// A force feedback effect's state changed.
const FORCEFEEDBACKSTATUS = 1 << 0x17,
}
}
impl Types {
/// Given a bitflag with only a single flag set, returns the event code corresponding to that
/// event. If multiple flags are set, the one with the most significant bit wins. In debug
/// mode,
#[inline(always)]
pub fn number<T: num::FromPrimitive>(&self) -> T {
let val = ffs::<u32>(self.bits());
if cfg!(debug_assertions) {
if self.bits() != 1 << val {
panic!("{:?} ought to have only one flag set to be used with .number()", self);
}
}
T::from_u32(val).unwrap()
}
}
bitflags! {
/// Device properties.
flags Props: u32 {
/// This input device needs a pointer ("cursor") for the user to know its state.
const POINTER = 1 << 0x00,
/// "direct input devices", according to the header.
const DIRECT = 1 << 0x01,
/// "has button(s) under pad", according to the header.
const BUTTONPAD = 1 << 0x02,
/// Touch rectangle only (I think this means that if there are multiple touches, then the
/// bounding rectangle of all the touches is returned, not each touch).
const SEMI_MT = 1 << 0x03,
/// "softbuttons at top of pad", according to the header.
const TOPBUTTONPAD = 1 << 0x04,
/// Is a pointing stick ("clit mouse" etc, https://xkcd.com/243/)
const POINTING_STICK = 1 << 0x05,
/// Has an accelerometer. Probably reports relative events in that case?
const ACCELEROMETER = 1 << 0x06
}
}
include!("scancodes.rs"); // it's a huge glob of text that I'm tired of skipping over.
bitflags! {
flags RelativeAxis: u32 {
const REL_X = 1 << 0x00,
const REL_Y = 1 << 0x01,
const REL_Z = 1 << 0x02,
const REL_RX = 1 << 0x03,
const REL_RY = 1 << 0x04,
const REL_RZ = 1 << 0x05,
const REL_HWHEEL = 1 << 0x06,
const REL_DIAL = 1 << 0x07,
const REL_WHEEL = 1 << 0x08,
const REL_MISC = 1 << 0x09,
}
}
bitflags! {
flags AbsoluteAxis: u64 {
const ABS_X = 1 << 0x00,
const ABS_Y = 1 << 0x01,
const ABS_Z = 1 << 0x02,
const ABS_RX = 1 << 0x03,
const ABS_RY = 1 << 0x04,
const ABS_RZ = 1 << 0x05,
const ABS_THROTTLE = 1 << 0x06,
const ABS_RUDDER = 1 << 0x07,
const ABS_WHEEL = 1 << 0x08,
const ABS_GAS = 1 << 0x09,
const ABS_BRAKE = 1 << 0x0a,
const ABS_HAT0X = 1 << 0x10,
const ABS_HAT0Y = 1 << 0x11,
const ABS_HAT1X = 1 << 0x12,
const ABS_HAT1Y = 1 << 0x13,
const ABS_HAT2X = 1 << 0x14,
const ABS_HAT2Y = 1 << 0x15,
const ABS_HAT3X = 1 << 0x16,
const ABS_HAT3Y = 1 << 0x17,
const ABS_PRESSURE = 1 << 0x18,
const ABS_DISTANCE = 1 << 0x19,
const ABS_TILT_X = 1 << 0x1a,
const ABS_TILT_Y = 1 << 0x1b,
const ABS_TOOL_WIDTH = 1 << 0x1c,
const ABS_VOLUME = 1 << 0x20,
const ABS_MISC = 1 << 0x28,
/// "MT slot being modified"
const ABS_MT_SLOT = 1 << 0x2f,
/// "Major axis of touching ellipse"
const ABS_MT_TOUCH_MAJOR = 1 << 0x30,
/// "Minor axis (omit if circular)"
const ABS_MT_TOUCH_MINOR = 1 << 0x31,
/// "Major axis of approaching ellipse"
const ABS_MT_WIDTH_MAJOR = 1 << 0x32,
/// "Minor axis (omit if circular)"
const ABS_MT_WIDTH_MINOR = 1 << 0x33,
/// "Ellipse orientation"
const ABS_MT_ORIENTATION = 1 << 0x34,
/// "Center X touch position"
const ABS_MT_POSITION_X = 1 << 0x35,
/// "Center Y touch position"
const ABS_MT_POSITION_Y = 1 << 0x36,
/// "Type of touching device"
const ABS_MT_TOOL_TYPE = 1 << 0x37,
/// "Group a set of packets as a blob"
const ABS_MT_BLOB_ID = 1 << 0x38,
/// "Unique ID of the initiated contact"
const ABS_MT_TRACKING_ID = 1 << 0x39,
/// "Pressure on contact area"
const ABS_MT_PRESSURE = 1 << 0x3a,
/// "Contact over distance"
const ABS_MT_DISTANCE = 1 << 0x3b,
/// "Center X tool position"
const ABS_MT_TOOL_X = 1 << 0x3c,
/// "Center Y tool position"
const ABS_MT_TOOL_Y = 1 << 0x3d,
const ABS_MAX = 1 << 0x3f,
}
}
bitflags! {
flags Switch: u32 {
/// "set = lid shut"
const SW_LID = 1 << 0x00,
/// "set = tablet mode"
const SW_TABLET_MODE = 1 << 0x01,
/// "set = inserted"
const SW_HEADPHONE_INSERT = 1 << 0x02,
/// "rfkill master switch, type 'any'"
const SW_RFKILL_ALL = 1 << 0x03,
/// "set = inserted"
const SW_MICROPHONE_INSERT = 1 << 0x04,
/// "set = plugged into doc"
const SW_DOCK = 1 << 0x05,
/// "set = inserted"
const SW_LINEOUT_INSERT = 1 << 0x06,
/// "set = mechanical switch set"
const SW_JACK_PHYSICAL_INSERT = 1 << 0x07,
/// "set = inserted"
const SW_VIDEOOUT_INSERT = 1 << 0x08,
/// "set = lens covered"
const SW_CAMERA_LENS_COVER = 1 << 0x09,
/// "set = keypad slide out"
const SW_KEYPAD_SLIDE = 1 << 0x0a,
/// "set = front proximity sensor active"
const SW_FRONT_PROXIMITY = 1 << 0x0b,
/// "set = rotate locked/disabled"
const SW_ROTATE_LOCK = 1 << 0x0c,
/// "set = inserted"
const SW_LINEIN_INSERT = 1 << 0x0d,
/// "set = device disabled"
const SW_MUTE_DEVICE = 1 << 0x0e,
const SW_MAX = 1 << 0x0f,
}
}
bitflags! {
/// LEDs specified by USB HID.
flags Led: u32 {
const LED_NUML = 1 << 0x00,
const LED_CAPSL = 1 << 0x01,
const LED_SCROLLL = 1 << 0x02,
const LED_KANA = 1 << 0x04,
/// "Stand-by"
const LED_SLEEP = 1 << 0x05,
const LED_SUSPEND = 1 << 0x06,
const LED_MUTE = 1 << 0x07,
/// "Generic indicator"
const LED_MISC = 1 << 0x08,
/// "Message waiting"
const LED_MAIL = 1 << 0x09,
/// "External power connected"
const LED_CHARGING = 1 << 0x0a,
const LED_MAX = 1 << 0x0f,
}
}
bitflags! {
/// Various miscellaneous event types. Current as of kernel 4.1.
flags Misc: u32 {
/// Serial number, only exported for tablets ("Transducer Serial Number")
const MSC_SERIAL = 1 << 0x00,
/// Only used by the PowerMate driver, right now.
const MSC_PULSELED = 1 << 0x01,
/// Completely unused.
const MSC_GESTURE = 1 << 0x02,
/// "Raw" event, rarely used.
const MSC_RAW = 1 << 0x03,
/// Key scancode
const MSC_SCAN = 1 << 0x04,
/// Completely unused.
const MSC_TIMESTAMP = 1 << 0x05,
const MSC_MAX = 1 << 0x07,
}
}
bitflags! {
flags FFStatus: u32 {
const FF_STATUS_STOPPED = 1 << 0x00,
const FF_STATUS_PLAYING = 1 << 0x01,
}
}
#[repr(C)]
#[derive(Copy, Clone)]
pub enum FFEffect {
FF_RUMBLE = 0x50,
FF_PERIODIC = 0x51,
FF_CONSTANT = 0x52,
FF_SPRING = 0x53,
FF_FRICTION = 0x54,
FF_DAMPER = 0x55,
FF_INERTIA = 0x56,
FF_RAMP = 0x57,
FF_SQUARE = 0x58,
FF_TRIANGLE = 0x59,
FF_SINE = 0x5a,
FF_SAW_UP = 0x5b,
FF_SAW_DOWN = 0x5c,
FF_CUSTOM = 0x5d,
FF_GAIN = 0x60,
FF_AUTOCENTER = 0x61,
FF_MAX = 0x7f,
}
bitflags! {
flags Repeat: u32 {
const REP_DELAY = 1 << 0x00,
const REP_PERIOD = 1 << 0x01,
}
}
bitflags! {
flags Sound: u32 {
const SND_CLICK = 1 << 0x00,
const SND_BELL = 1 << 0x01,
const SND_TONE = 1 << 0x02,
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
pub enum Synchronization {
/// Terminates a packet of events from the device.
SYN_REPORT = 0,
/// Appears to be unused.
SYN_CONFIG = 1,
/// "Used to synchronize and separate touch events"
SYN_MT_REPORT = 2,
/// Ring buffer filled, events were dropped.
SYN_DROPPED = 3,
SYN_MAX = 0xf,
}
2015-07-21 09:16:30 +00:00
#[derive(Clone)]
pub struct DeviceState {
2015-07-21 09:16:30 +00:00
/// The state corresponds to kernel state at this timestamp.
pub timestamp: libc::timeval,
/// Set = key pressed
pub key_vals: FixedBitSet,
pub abs_vals: Vec<ioctl::input_absinfo>,
2015-07-21 09:16:30 +00:00
/// Set = switch enabled (closed)
pub switch_vals: FixedBitSet,
2015-07-21 09:16:30 +00:00
/// Set = LED lit
pub led_vals: FixedBitSet,
}
pub struct Device {
fd: RawFd,
ty: Types,
name: CString,
phys: Option<CString>,
uniq: Option<CString>,
id: ioctl::input_id,
props: Props,
driver_version: (u8, u8, u8),
key_bits: FixedBitSet,
rel: RelativeAxis,
abs: AbsoluteAxis,
switch: Switch,
led: Led,
misc: Misc,
ff: FixedBitSet,
ff_stat: FFStatus,
rep: Repeat,
snd: Sound,
pending_events: Vec<ioctl::input_event>,
2015-07-21 09:16:30 +00:00
clock: libc::c_int,
// pending_events[last_seen..] is the events that have occurred since the last sync.
last_seen: usize,
state: DeviceState,
}
impl std::fmt::Debug for Device {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let mut ds = f.debug_struct("Device");
ds.field("name", &self.name).field("fd", &self.fd).field("ty", &self.ty);
if let Some(ref phys) = self.phys {
ds.field("phys", phys);
}
if let Some(ref uniq) = self.uniq {
ds.field("uniq", uniq);
}
ds.field("id", &self.id)
.field("id", &self.id)
.field("props", &self.props)
.field("driver_version", &self.driver_version);
if self.ty.contains(SYNCHRONIZATION) {
}
if self.ty.contains(KEY) {
ds.field("key_bits", &self.key_bits)
.field("key_vals", &self.state.key_vals);
}
if self.ty.contains(RELATIVE) {
ds.field("rel", &self.rel);
}
if self.ty.contains(ABSOLUTE) {
ds.field("abs", &self.abs);
for idx in (0..0x3f) {
let abs = 1 << idx;
// ignore multitouch, we'll handle that later.
if (self.abs.bits() & abs) == 1 {
// eugh.
ds.field(&format!("abs_{:x}", idx), &self.state.abs_vals[idx as usize]);
}
}
}
if self.ty.contains(MISC) {
}
if self.ty.contains(SWITCH) {
ds.field("switch", &self.switch)
.field("switch_vals", &self.state.switch_vals);
}
if self.ty.contains(LED) {
ds.field("led", &self.led)
.field("led_vals", &self.state.led_vals);
}
if self.ty.contains(SOUND) {
ds.field("snd", &self.snd);
}
if self.ty.contains(REPEAT) {
ds.field("rep", &self.rep);
}
if self.ty.contains(FORCEFEEDBACK) {
ds.field("ff", &self.ff);
}
if self.ty.contains(POWER) {
}
if self.ty.contains(FORCEFEEDBACKSTATUS) {
ds.field("ff_stat", &self.ff_stat);
}
ds.finish()
}
}
fn bus_name(x: u16) -> &'static str {
match x {
0x1 => "PCI",
0x2 => "ISA Plug 'n Play",
0x3 => "USB",
0x4 => "HIL",
0x5 => "Bluetooth",
0x6 => "Virtual",
0x10 => "ISA",
0x11 => "i8042",
0x12 => "XTKBD",
0x13 => "RS232",
0x14 => "Gameport",
0x15 => "Parallel Port",
0x16 => "Amiga",
0x17 => "ADB",
0x18 => "I2C",
0x19 => "Host",
0x1A => "GSC",
0x1B => "Atari",
0x1C => "SPI",
_ => "Unknown",
}
}
impl std::fmt::Display for Device {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
try!(writeln!(f, "{:?}", self.name));
try!(writeln!(f, " Driver version: {}.{}.{}", self.driver_version.0, self.driver_version.1, self.driver_version.2));
if let Some(ref phys) = self.phys {
try!(writeln!(f, " Physical address: {:?}", phys));
}
if let Some(ref uniq) = self.uniq {
try!(writeln!(f, " Unique name: {:?}", uniq));
}
try!(writeln!(f, " Bus: {}", bus_name(self.id.bustype)));
try!(writeln!(f, " Vendor: 0x{:x}", self.id.vendor));
try!(writeln!(f, " Product: 0x{:x}", self.id.product));
try!(writeln!(f, " Version: 0x{:x}", self.id.version));
try!(writeln!(f, " Properties: {:?}", self.props));
if self.ty.contains(SYNCHRONIZATION) {
}
if self.ty.contains(KEY) {
try!(writeln!(f, " Keys supported:"));
for key_idx in (0..self.key_bits.len()) {
if self.key_bits.contains(key_idx) {
2015-07-21 09:16:30 +00:00
// Cross our fingers... (what did this mean?)
try!(writeln!(f, " {:?} ({}index {})",
unsafe { std::mem::transmute::<_, Key>(key_idx as libc::c_int) },
if self.state.key_vals.contains(key_idx) { "pressed, " } else { "" },
key_idx));
}
}
}
if self.ty.contains(RELATIVE) {
try!(writeln!(f, " Relative Axes: {:?}", self.rel));
}
if self.ty.contains(ABSOLUTE) {
try!(writeln!(f, " Absolute Axes:"));
for idx in (0..0x3f) {
let abs = 1<< idx;
if self.abs.bits() & abs != 0 {
// FIXME: abs val Debug is gross
try!(writeln!(f, " {:?} ({:?}, index {})",
AbsoluteAxis::from_bits(abs).unwrap(),
self.state.abs_vals[idx as usize],
idx));
}
}
}
if self.ty.contains(MISC) {
try!(writeln!(f, " Miscellaneous capabilities: {:?}", self.misc));
}
if self.ty.contains(SWITCH) {
try!(writeln!(f, " Switches:"));
for idx in (0..0xf) {
let sw = 1 << idx;
if sw < SW_MAX.bits() && self.switch.bits() & sw == 1 {
try!(writeln!(f, " {:?} ({:?}, index {})",
Switch::from_bits(sw).unwrap(),
self.state.switch_vals[idx as usize],
idx));
}
}
}
if self.ty.contains(LED) {
try!(writeln!(f, " LEDs:"));
for idx in (0..0xf) {
let led = 1 << idx;
if led < LED_MAX.bits() && self.led.bits() & led == 1 {
try!(writeln!(f, " {:?} ({:?}, index {})",
Led::from_bits(led).unwrap(),
self.state.led_vals[idx as usize],
idx));
}
}
}
if self.ty.contains(SOUND) {
try!(writeln!(f, " Sound: {:?}", self.snd));
}
if self.ty.contains(REPEAT) {
try!(writeln!(f, " Repeats: {:?}", self.rep));
}
if self.ty.contains(FORCEFEEDBACK) {
try!(writeln!(f, " Force Feedback supported"));
}
if self.ty.contains(POWER) {
try!(writeln!(f, " Power supported"));
}
if self.ty.contains(FORCEFEEDBACKSTATUS) {
try!(writeln!(f, " Force Feedback status supported"));
}
Ok(())
}
}
impl Drop for Device {
fn drop(&mut self) {
2015-07-21 09:16:30 +00:00
// Linux close(2) can fail, but there is nothing to do if it does.
unsafe { libc::close(self.fd); }
}
}
fn ffs<T: num::FromPrimitive>(x: u32) -> T {
T::from_u32(31 - x.leading_zeros()).unwrap()
}
impl Device {
pub fn fd(&self) -> RawFd {
self.fd
}
pub fn events_supported(&self) -> Types {
self.ty
}
pub fn name(&self) -> &CString {
&self.name
}
pub fn physical_path(&self) -> &Option<CString> {
&self.phys
}
pub fn unique_name(&self) -> &Option<CString> {
&self.uniq
}
pub fn input_id(&self) -> ioctl::input_id {
self.id
}
pub fn properties(&self) -> Props {
self.props
}
pub fn driver_version(&self) -> (u8, u8, u8) {
self.driver_version
}
pub fn keys_supported(&self) -> &FixedBitSet {
&self.key_bits
}
pub fn relative_axes_supported(&self) -> RelativeAxis {
self.rel
}
pub fn absolute_axes_supported(&self) -> AbsoluteAxis {
self.abs
}
pub fn switches_supported(&self) -> Switch {
self.switch
}
pub fn leds_supported(&self) -> Led {
self.led
}
pub fn misc_properties(&self) -> Misc {
self.misc
}
pub fn repeats_supported(&self) -> Repeat {
self.rep
}
pub fn sounds_supported(&self) -> Sound {
self.snd
}
pub fn state(&self) -> &DeviceState {
&self.state
}
pub fn open(path: &AsRef<Path>) -> Result<Device, Error> {
let cstr = match CString::new(path.as_ref().as_os_str().as_bytes()) {
Ok(s) => s,
Err(e) => return Err(Error::NulError(e))
};
// FIXME: only need for writing is for setting LED values. re-evaluate always using RDWR
// later.
let fd = Fd(unsafe { libc::open(cstr.as_ptr(), libc::O_NONBLOCK | libc::O_RDWR, 0) });
if *fd == -1 {
std::mem::forget(fd);
return Err(Error::LibcError(errno::errno()))
}
do_ioctl!(fioclex(*fd)); // non-atomic :( but no O_CLOEXEC yet.
let mut dev = Device {
fd: *fd,
ty: Types::empty(),
name: unsafe { CString::from_vec_unchecked(Vec::new()) },
phys: None,
uniq: None,
id: unsafe { std::mem::zeroed() },
props: Props::empty(),
driver_version: (0, 0, 0),
key_bits: FixedBitSet::with_capacity(KEY_MAX as usize),
rel: RelativeAxis::empty(),
abs: AbsoluteAxis::empty(),
switch: Switch::empty(),
led: Led::empty(),
misc: Misc::empty(),
ff: FixedBitSet::with_capacity(FF_MAX as usize + 1),
ff_stat: FFStatus::empty(),
rep: Repeat::empty(),
snd: Sound::empty(),
pending_events: Vec::with_capacity(64),
last_seen: 0,
state: DeviceState {
2015-07-21 09:16:30 +00:00
timestamp: libc::timeval { tv_sec: 0, tv_usec: 0 },
key_vals: FixedBitSet::with_capacity(KEY_MAX as usize),
abs_vals: vec![],
switch_vals: FixedBitSet::with_capacity(0x10),
led_vals: FixedBitSet::with_capacity(0x10),
},
2015-07-21 09:16:30 +00:00
clock: libc::CLOCK_REALTIME
};
let mut bits: u32 = 0;
let mut bits64: u64 = 0;
let mut vec = Vec::with_capacity(256);
do_ioctl!(eviocgbit(*fd, 0, 4, &mut bits as *mut _ as *mut u8));
dev.ty = Types::from_bits(bits).expect("evdev: unexpected type bits! report a bug");
let dev_len = do_ioctl!(eviocgname(*fd, vec.as_mut_ptr(), 255));
unsafe { vec.set_len(dev_len as usize - 1) };
dev.name = CString::new(vec.clone()).unwrap();
let phys_len = unsafe { ioctl::eviocgphys(*fd, vec.as_mut_ptr(), 255) };
if phys_len > 0 {
unsafe { vec.set_len(phys_len as usize - 1) };
dev.phys = Some(CString::new(vec.clone()).unwrap());
}
let uniq_len = unsafe { ioctl::eviocguniq(*fd, vec.as_mut_ptr(), 255) };
if uniq_len > 0 {
unsafe { vec.set_len(uniq_len as usize - 1) };
dev.uniq = Some(CString::new(vec.clone()).unwrap());
}
do_ioctl!(eviocgid(*fd, &mut dev.id));
let mut driver_version: i32 = 0;
do_ioctl!(eviocgversion(*fd, &mut driver_version));
dev.driver_version =
(((driver_version >> 16) & 0xff) as u8,
((driver_version >> 8) & 0xff) as u8,
(driver_version & 0xff) as u8);
do_ioctl!(eviocgprop(*fd, &mut bits as *mut _ as *mut u8, 0x1f)); // FIXME: handle old kernel
dev.props = Props::from_bits(bits).expect("evdev: unexpected prop bits! report a bug");
if dev.ty.contains(KEY) {
do_ioctl!(eviocgbit(*fd, KEY.number(), dev.key_bits.len() as libc::c_int, dev.key_bits.as_mut_slice().as_mut_ptr() as *mut u8));
}
if dev.ty.contains(RELATIVE) {
do_ioctl!(eviocgbit(*fd, RELATIVE.number(), 0xf, &mut bits as *mut _ as *mut u8));
dev.rel = RelativeAxis::from_bits(bits).expect("evdev: unexpected rel bits! report a bug");
}
if dev.ty.contains(ABSOLUTE) {
do_ioctl!(eviocgbit(*fd, ABSOLUTE.number(), 0x3f, &mut bits64 as *mut _ as *mut u8));
println!("abs bits: {:b}", bits64);
dev.abs = AbsoluteAxis::from_bits(bits64).expect("evdev: unexpected abs bits! report a bug");
dev.state.abs_vals = vec![ioctl::input_absinfo::default(); 0x3f];
}
if dev.ty.contains(SWITCH) {
do_ioctl!(eviocgbit(*fd, SWITCH.number(), 0xf, &mut bits as *mut _ as *mut u8));
dev.switch = Switch::from_bits(bits).expect("evdev: unexpected switch bits! report a bug");
}
if dev.ty.contains(LED) {
do_ioctl!(eviocgbit(*fd, LED.number(), 0xf, &mut bits as *mut _ as *mut u8));
dev.led = Led::from_bits(bits).expect("evdev: unexpected led bits! report a bug");
}
if dev.ty.contains(MISC) {
do_ioctl!(eviocgbit(*fd, MISC.number(), 0x7, &mut bits as *mut _ as *mut u8));
dev.misc = Misc::from_bits(bits).expect("evdev: unexpected misc bits! report a bug");
}
//do_ioctl!(eviocgbit(*fd, ffs(FORCEFEEDBACK.bits()), 0x7f, &mut bits as *mut _ as *mut u8));
if dev.ty.contains(SOUND) {
do_ioctl!(eviocgbit(*fd, SOUND.number(), 0x7, &mut bits as *mut _ as *mut u8));
dev.snd = Sound::from_bits(bits).expect("evdev: unexpected sound bits! report a bug");
}
try!(dev.sync_state());
std::mem::forget(fd);
Ok(dev)
}
/// Synchronize the `Device` state with the kernel device state.
///
/// If there is an error at any point, the state will not be synchronized completely.
pub fn sync_state(&mut self) -> Result<(), Error> {
if self.ty.contains(KEY) {
do_ioctl!(eviocgkey(self.fd, self.state.key_vals.as_mut_slice().as_mut_ptr() as *mut _ as *mut u8, self.state.key_vals.len()));
}
if self.ty.contains(ABSOLUTE) {
for idx in (0..0x28) {
let abs = 1 << idx;
// ignore multitouch, we'll handle that later.
if abs < ABS_MT_SLOT.bits() && self.abs.bits() & abs != 1 {
do_ioctl!(eviocgabs(self.fd, idx as u32, &mut self.state.abs_vals[idx as usize]));
}
}
}
if self.ty.contains(SWITCH) {
do_ioctl!(eviocgsw(self.fd, &mut self.state.switch_vals.as_mut_slice().as_mut_ptr() as *mut _ as *mut u8, self.state.switch_vals.len()));
}
if self.ty.contains(LED) {
do_ioctl!(eviocgled(self.fd, &mut self.state.led_vals.as_mut_slice().as_mut_ptr() as *mut _ as *mut u8, self.state.led_vals.len()));
}
Ok(())
}
2015-07-21 09:16:30 +00:00
/// Do SYN_DROPPED synchronization, and compensate for missing events by inserting events into
/// the stream which, when applied to any state being kept outside of this `Device`, will
/// synchronize it with the kernel state.
fn compensate_dropped(&mut self) -> Result<(), Error> {
2015-07-21 09:16:30 +00:00
let mut drop_from = None;
for (idx, event) in self.pending_events[self.last_seen..].iter().enumerate() {
if event._type == SYN_DROPPED as u16 {
drop_from = Some(idx);
break
}
}
if let Some(idx) = drop_from {
// look for the nearest SYN_REPORT before the SYN_DROPPED, remove everything after it.
let mut prev_report = 0; // (if there's no previous SYN_REPORT, then the entire vector is bogus)
for (idx, event) in self.pending_events[..idx].iter().enumerate().rev() {
if event._type == SYN_REPORT as u16 {
prev_report = idx;
break;
}
}
self.pending_events.truncate(prev_report);
}
// Alright, pending_events is in a sane state. Now, let's sync the local state. We will
// create a phony packet that contains deltas from the previous device state to the current
// device state.
let old_state = self.state.clone();
try!(self.sync_state());
let mut time = unsafe { std::mem::zeroed() };
unsafe { clock_gettime(self.clock, &mut time); }
let time = libc::timeval {
tv_sec: time.tv_sec,
tv_usec: time.tv_nsec * 1000,
};
if self.ty.contains(KEY) {
for key_idx in (0..self.key_bits.len()) {
if self.key_bits.contains(key_idx) {
if old_state.key_vals[key_idx] != self.state.key_vals[key_idx] {
self.pending_events.push(ioctl::input_event {
time: time,
_type: KEY.number(),
code: key_idx as u16,
value: if self.state.key_vals[key_idx] { 1 } else { 0 },
});
}
}
}
}
if self.ty.contains(ABSOLUTE) {
for idx in (0..0x3f) {
let abs = 1 << idx;
if self.abs.bits() & abs != 0 {
if old_state.abs_vals[idx as usize] != self.state.abs_vals[idx as usize] {
self.pending_events.push(ioctl::input_event {
time: time,
_type: ABSOLUTE.number(),
code: idx as u16,
value: 0, // I think this is correct; code gets used as an index into abs_vals
});
}
}
}
}
if self.ty.contains(SWITCH) {
for idx in (0..0xf) {
let sw = 1 << idx;
if sw < SW_MAX.bits() && self.switch.bits() & sw == 1 {
if old_state.switch_vals[idx as usize] != self.state.switch_vals[idx as usize] {
self.pending_events.push(ioctl::input_event {
time: time,
_type: SWITCH.number(),
code: idx as u16,
value: if self.state.switch_vals[idx as usize] { 1 } else { 0 },
});
}
}
}
}
if self.ty.contains(LED) {
for idx in (0..0xf) {
let led = 1 << idx;
if led < LED_MAX.bits() && self.led.bits() & led == 1 {
if old_state.led_vals[idx as usize] != self.state.led_vals[idx as usize] {
self.pending_events.push(ioctl::input_event {
time: time,
_type: LED.number(),
code: idx as u16,
value: if self.state.led_vals[idx as usize] { 1 } else { 0 },
});
}
}
}
}
2015-07-21 09:16:30 +00:00
self.pending_events.push(ioctl::input_event {
time: time,
_type: SYNCHRONIZATION.number(),
code: SYN_REPORT as u16,
value: 0,
});
Ok(())
}
fn fill_events(&mut self) -> Result<(), Error> {
let mut buf = &mut self.pending_events;
loop {
buf.reserve(20);
let pre_len = buf.len();
let sz = unsafe {
libc::read(self.fd,
buf.as_mut_ptr()
.offset(pre_len as isize) as *mut libc::c_void,
(size_of::<ioctl::input_event>() * (buf.capacity() - pre_len)) as libc::size_t)
};
if sz == -1 {
let errno = errno::errno();
if errno != errno::Errno(libc::EAGAIN) {
return Err(Error::LibcError(errno));
} else {
break;
}
} else {
unsafe {
buf.set_len(pre_len + (sz as usize / size_of::<ioctl::input_event>()));
}
}
}
Ok(())
}
/// Exposes the raw evdev events without doing synchronization on SYN_DROPPED.
pub fn events_no_sync(&mut self) -> Result<RawEvents, Error> {
try!(self.fill_events());
Ok(RawEvents::new(self))
}
/// Exposes the raw evdev events, doing synchronization on SYN_DROPPED.
///
/// Will insert "fake" events
pub fn events(&mut self) -> Result<RawEvents, Error> {
try!(self.fill_events());
try!(self.compensate_dropped());
Ok(RawEvents(self))
}
}
pub struct Events<'a>(&'a mut Device);
pub struct RawEvents<'a>(&'a mut Device);
impl<'a> RawEvents<'a> {
fn new(dev: &'a mut Device) -> RawEvents<'a> {
dev.pending_events.reverse();
RawEvents(dev)
}
}
impl<'a> Drop for RawEvents<'a> {
fn drop(&mut self) {
self.0.pending_events.reverse();
self.0.last_seen = self.0.pending_events.len();
}
}
impl<'a> Iterator for RawEvents<'a> {
type Item = ioctl::input_event;
#[inline(always)]
fn next(&mut self) -> Option<ioctl::input_event> {
self.0.pending_events.pop()
}
}
/// Crawls `/dev/input` for evdev devices.
///
/// Will not bubble up any errors in opening devices or traversing the directory. Instead returns
/// an empty vector or omits the devices that could not be opened.
pub fn enumerate() -> Vec<Device> {
let mut res = Vec::new();
if let Ok(dir) = std::fs::read_dir("/dev/input") {
for entry in dir {
if let Ok(entry) = entry {
if let Ok(dev) = Device::open(&entry.path()) {
res.push(dev)
}
}
}
}
res
2015-05-29 18:57:46 +00:00
}