Syncing impl (#36)

* WIP syncing impl

* Finish up syncing impl

* Reorganize synchronization code + add more docs

* Wrap libc::input_id

* Remove thread::sleep used for testing

* Make EventStream::Item io::Result<InputEvent>

* Add RawDevice::empty_state()

* Update Device rustdoc

* Make raw/sync_stream naming consistent

* Update crate docs

* Fix missing first event of block

* Owned AttributeSet, borrowed AttributeSetRef

* Add some basic syncing tests

* Add some more syncing tests
This commit is contained in:
Noah 2021-03-16 21:38:42 -05:00 committed by GitHub
parent 6b13fd3d45
commit 3581aa25e0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 1671 additions and 943 deletions

View file

@ -21,7 +21,7 @@ futures-core = { version = "0.3", optional = true }
[dev-dependencies] [dev-dependencies]
tokio_1 = { package = "tokio", version = "1.0", features = ["macros", "rt-multi-thread"] } tokio_1 = { package = "tokio", version = "1.0", features = ["macros", "rt-multi-thread"] }
futures-util = "0.3" itertools = "0.10"
[[example]] [[example]]
name = "evtest_tokio" name = "evtest_tokio"

View file

@ -7,7 +7,7 @@ fn main() {
let mut d = if args.len() > 1 { let mut d = if args.len() > 1 {
evdev::Device::open(&args.nth(1).unwrap()).unwrap() evdev::Device::open(&args.nth(1).unwrap()).unwrap()
} else { } else {
let mut devices = evdev::enumerate().collect::<Vec<_>>(); let devices = evdev::enumerate().collect::<Vec<_>>();
for (i, d) in devices.iter().enumerate() { for (i, d) in devices.iter().enumerate() {
println!("{}: {}", i, d.name().unwrap_or("Unnamed device")); println!("{}: {}", i, d.name().unwrap_or("Unnamed device"));
} }
@ -15,12 +15,13 @@ fn main() {
let _ = std::io::stdout().flush(); let _ = std::io::stdout().flush();
let mut chosen = String::new(); let mut chosen = String::new();
std::io::stdin().read_line(&mut chosen).unwrap(); std::io::stdin().read_line(&mut chosen).unwrap();
devices.swap_remove(chosen.trim().parse::<usize>().unwrap()) let n = chosen.trim().parse::<usize>().unwrap();
devices.into_iter().nth(n).unwrap()
}; };
println!("{}", d); println!("{}", d);
println!("Events:"); println!("Events:");
loop { loop {
for ev in d.fetch_events_no_sync().unwrap() { for ev in d.fetch_events().unwrap() {
println!("{:?}", ev); println!("{:?}", ev);
} }
} }

View file

@ -50,7 +50,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
println!("Events:"); println!("Events:");
loop { loop {
match d.fetch_events_no_sync() { match d.fetch_events() {
Ok(iterator) => { Ok(iterator) => {
for ev in iterator { for ev in iterator {
println!("{:?}", ev); println!("{:?}", ev);

View file

@ -1,7 +1,5 @@
use tokio_1 as tokio; use tokio_1 as tokio;
use futures_util::TryStreamExt;
#[tokio::main] #[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> { async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut args = std::env::args_os(); let mut args = std::env::args_os();
@ -20,10 +18,9 @@ async fn main() -> Result<(), Box<dyn std::error::Error>> {
}; };
println!("{}", d); println!("{}", d);
println!("Events:"); println!("Events:");
let mut events = d.into_event_stream_no_sync()?; let mut events = d.into_event_stream()?;
while let Some(ev) = events.try_next().await? { loop {
let ev = events.next_event().await?;
println!("{:?}", ev); println!("{:?}", ev);
} }
println!("EOF!");
Ok(())
} }

View file

@ -1,51 +1,183 @@
use bitvec::prelude::*; use bitvec::prelude::*;
use std::fmt; use std::fmt;
use std::ops::{Deref, DerefMut};
/// A collection of bits representing either device capability or state. /// A collection of bits representing either device capability or state.
/// ///
/// This can be used to iterate across all keys supported by a keyboard, or all buttons supported /// This can be used to iterate across all keys supported by a keyboard, or all buttons supported
/// by a joystick. You can also query directly whether a specific bit is set (corresponding to /// by a joystick. You can also query directly whether a specific bit is set (corresponding to
/// whether a key or button is depressed). /// whether a key or button is depressed).
#[derive(Copy, Clone)] #[repr(transparent)]
pub struct AttributeSet<'a, T> { pub struct AttributeSetRef<T> {
bitslice: &'a BitSlice<Lsb0, u8>,
_indexer: std::marker::PhantomData<T>, _indexer: std::marker::PhantomData<T>,
bitslice: BitSlice<Lsb0, u8>,
} }
impl<'a, T: EvdevEnum> AttributeSet<'a, T> { impl<T: EvdevEnum> AttributeSetRef<T> {
#[inline] #[inline]
pub(crate) fn new(bitslice: &'a BitSlice<Lsb0, u8>) -> Self { fn new(bitslice: &BitSlice<Lsb0, u8>) -> &Self {
Self { // SAFETY: for<T> AttributeSet<T> is repr(transparent) over BitSlice<Lsb0, u8>
bitslice, unsafe { &*(bitslice as *const BitSlice<Lsb0, u8> as *const Self) }
_indexer: std::marker::PhantomData,
}
} }
#[inline] #[inline]
fn new_mut(bitslice: &mut BitSlice<Lsb0, u8>) -> &mut Self {
// SAFETY: for<T> AttributeSet<T> is repr(transparent) over BitSlice<Lsb0, u8>
unsafe { &mut *(bitslice as *mut BitSlice<Lsb0, u8> as *mut Self) }
}
/// Returns `true` if this AttributeSet contains the passed T. /// Returns `true` if this AttributeSet contains the passed T.
#[inline]
pub fn contains(&self, attr: T) -> bool { pub fn contains(&self, attr: T) -> bool {
self.bitslice.get(attr.to_index()).map_or(false, |b| *b) self.bitslice.get(attr.to_index()).map_or(false, |b| *b)
} }
#[inline]
/// Provides an iterator over all "set" bits in the collection. /// Provides an iterator over all "set" bits in the collection.
pub fn iter(&self) -> impl Iterator<Item = T> + 'a { #[inline]
pub fn iter(&self) -> impl Iterator<Item = T> + '_ {
self.bitslice.iter_ones().map(T::from_index) self.bitslice.iter_ones().map(T::from_index)
} }
#[inline]
pub(crate) fn slice(&self, start: T) -> &Self {
Self::new(&self.bitslice[start.to_index()..])
}
pub fn insert(&mut self, attr: T) {
self.set(attr, true)
}
pub fn remove(&mut self, attr: T) {
self.set(attr, false)
}
// TODO: figure out a good name for this if we make it public
#[inline]
pub(crate) fn set(&mut self, attr: T, on: bool) {
self.bitslice.set(attr.to_index(), on)
}
} }
impl<'a, T: EvdevEnum + fmt::Debug> fmt::Debug for AttributeSet<'a, T> { impl<T: EvdevEnum + fmt::Debug> fmt::Debug for AttributeSetRef<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_set().entries(self.iter()).finish() f.debug_set().entries(self.iter()).finish()
} }
} }
pub struct AttributeSet<T: ArrayedEvdevEnum> {
container: T::Array,
}
impl<T: ArrayedEvdevEnum> AttributeSet<T> {
pub fn new() -> Self {
Self {
container: T::zeroed_array(),
}
}
fn as_bitslice(&self) -> &BitSlice<Lsb0, u8> {
T::array_as_slice(&self.container)
}
fn as_mut_bitslice(&mut self) -> &mut BitSlice<Lsb0, u8> {
T::array_as_slice_mut(&mut self.container)
}
#[inline]
pub(crate) fn as_mut_raw_slice(&mut self) -> &mut [u8] {
T::array_as_buf(&mut self.container)
}
}
impl<T: ArrayedEvdevEnum> Default for AttributeSet<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: ArrayedEvdevEnum> Deref for AttributeSet<T> {
type Target = AttributeSetRef<T>;
fn deref(&self) -> &AttributeSetRef<T> {
AttributeSetRef::new(self.as_bitslice())
}
}
impl<T: ArrayedEvdevEnum> DerefMut for AttributeSet<T> {
fn deref_mut(&mut self) -> &mut AttributeSetRef<T> {
AttributeSetRef::new_mut(self.as_mut_bitslice())
}
}
impl<T: ArrayedEvdevEnum> Clone for AttributeSet<T>
where
T::Array: Clone,
{
fn clone(&self) -> Self {
Self {
container: self.container.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.container.clone_from(&other.container)
}
}
impl<T: ArrayedEvdevEnum + fmt::Debug> fmt::Debug for AttributeSet<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(**self).fmt(f)
}
}
pub trait EvdevEnum: Copy + 'static { pub trait EvdevEnum: Copy + 'static {
fn from_index(i: usize) -> Self; fn from_index(i: usize) -> Self;
fn to_index(self) -> usize; fn to_index(self) -> usize;
} }
pub trait ArrayedEvdevEnum: EvdevEnum {
type Array;
fn array_as_slice(arr: &Self::Array) -> &BitSlice<Lsb0, u8>;
fn array_as_slice_mut(arr: &mut Self::Array) -> &mut BitSlice<Lsb0, u8>;
fn array_as_buf(arr: &mut Self::Array) -> &mut [u8];
fn zeroed_array() -> Self::Array;
}
macro_rules! evdev_enum { macro_rules! evdev_enum {
($t:ty, Array, $($(#[$attr:meta])* $c:ident = $val:expr,)*) => {
evdev_enum!(
$t,
Array:bitvec::BitArr!(for <$t>::COUNT, in u8),
|x| x,
|x| x,
bitvec::array::BitArray::as_mut_raw_slice,
bitvec::array::BitArray::zeroed,
$($(#[$attr])* $c = $val,)*
);
};
(
$t:ty,
Array: $Array:ty, $arr_as_slice:expr, $arr_as_slice_mut:expr, $arr_as_buf:expr, $zero:expr,
$($(#[$attr:meta])* $c:ident = $val:expr,)*
) => {
impl $crate::attribute_set::ArrayedEvdevEnum for $t {
type Array = $Array;
fn array_as_slice(arr: &Self::Array) -> &bitvec::slice::BitSlice<bitvec::order::Lsb0, u8> {
let f: fn(&Self::Array) -> &bitvec::slice::BitSlice<bitvec::order::Lsb0, u8> = $arr_as_slice;
f(arr)
}
fn array_as_slice_mut(arr: &mut Self::Array) -> &mut bitvec::slice::BitSlice<bitvec::order::Lsb0, u8> {
let f: fn(&mut Self::Array) -> &mut bitvec::slice::BitSlice<bitvec::order::Lsb0, u8> = $arr_as_slice_mut;
f(arr)
}
fn array_as_buf(arr: &mut Self::Array) -> &mut [u8] {
let f: fn(&mut Self::Array) -> &mut [u8] = $arr_as_buf;
f(arr)
}
fn zeroed_array() -> Self::Array {
$zero()
}
}
evdev_enum!($t, $($(#[$attr])* $c = $val,)*);
};
($t:ty, $($(#[$attr:meta])* $c:ident = $val:expr,)*) => { ($t:ty, $($(#[$attr:meta])* $c:ident = $val:expr,)*) => {
impl $t { impl $t {
$($(#[$attr])* pub const $c: Self = Self($val);)* $($(#[$attr])* pub const $c: Self = Self($val);)*

View file

@ -6,6 +6,7 @@ pub struct EventType(pub u16);
evdev_enum!( evdev_enum!(
EventType, EventType,
Array,
/// A bookkeeping event. Usually not important to applications. /// A bookkeeping event. Usually not important to applications.
SYNCHRONIZATION = 0x00, SYNCHRONIZATION = 0x00,
/// A key changed state. A key, or button, is usually a momentary switch (in the circuit sense). It has two /// A key changed state. A key, or button, is usually a momentary switch (in the circuit sense). It has two
@ -45,33 +46,21 @@ impl EventType {
pub(crate) const COUNT: usize = 0x20; pub(crate) const COUNT: usize = 0x20;
} }
/// A "synchronization" message type published by the kernel into the events stream. /// A "synchronization" message type published by the kernel into the events stream.
#[derive(Copy, Clone, PartialEq, Eq)] #[derive(Copy, Clone, PartialEq, Eq)]
pub struct Synchronization(pub u16); pub struct Synchronization(pub u16);
impl Synchronization { evdev_enum!(
Synchronization,
/// Used to mark the end of a single atomic "reading" from the device. /// Used to mark the end of a single atomic "reading" from the device.
pub const SYN_REPORT: u16 = 0; SYN_REPORT = 0,
/// Appears to be unused. /// Appears to be unused.
pub const SYN_CONFIG: u16 = 1; SYN_CONFIG = 1,
/// "Used to synchronize and separate touch events" /// "Used to synchronize and separate touch events"
pub const SYN_MT_REPORT: u16 = 2; SYN_MT_REPORT = 2,
/// Ring buffer filled, events were dropped. /// Ring buffer filled, events were dropped.
pub const SYN_DROPPED: u16 = 3; SYN_DROPPED = 3,
} );
impl std::fmt::Debug for Synchronization {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self.0 {
Synchronization::SYN_REPORT => f.pad(stringify!(SYN_REPORT)),
Synchronization::SYN_CONFIG => f.pad(stringify!(SYN_CONFIG)),
Synchronization::SYN_MT_REPORT => f.pad(stringify!(SYN_MT_REPORT)),
Synchronization::SYN_DROPPED => f.pad(stringify!(SYN_DROPPED)),
_ => write!(f, "{}", self.0),
}
}
}
/// Device properties. /// Device properties.
#[derive(Copy, Clone, PartialEq, Eq)] #[derive(Copy, Clone, PartialEq, Eq)]
@ -79,6 +68,7 @@ pub struct PropType(pub u16);
evdev_enum!( evdev_enum!(
PropType, PropType,
Array,
/// This input device needs a pointer ("cursor") for the user to know its state. /// This input device needs a pointer ("cursor") for the user to know its state.
POINTER = 0x00, POINTER = 0x00,
/// "direct input devices", according to the header. /// "direct input devices", according to the header.
@ -106,6 +96,7 @@ pub struct RelativeAxisType(pub u16);
evdev_enum!( evdev_enum!(
RelativeAxisType, RelativeAxisType,
Array,
REL_X = 0x00, REL_X = 0x00,
REL_Y = 0x01, REL_Y = 0x01,
REL_Z = 0x02, REL_Z = 0x02,
@ -131,6 +122,7 @@ pub struct AbsoluteAxisType(pub u16);
evdev_enum!( evdev_enum!(
AbsoluteAxisType, AbsoluteAxisType,
Array,
ABS_X = 0x00, ABS_X = 0x00,
ABS_Y = 0x01, ABS_Y = 0x01,
ABS_Z = 0x02, ABS_Z = 0x02,
@ -199,6 +191,7 @@ pub struct SwitchType(pub u16);
evdev_enum!( evdev_enum!(
SwitchType, SwitchType,
Array,
/// "set = lid shut" /// "set = lid shut"
SW_LID = 0x00, SW_LID = 0x00,
/// "set = tablet mode" /// "set = tablet mode"
@ -245,6 +238,7 @@ pub struct LedType(pub u16);
evdev_enum!( evdev_enum!(
LedType, LedType,
Array,
LED_NUML = 0x00, LED_NUML = 0x00,
LED_CAPSL = 0x01, LED_CAPSL = 0x01,
LED_SCROLLL = 0x02, LED_SCROLLL = 0x02,
@ -272,6 +266,7 @@ pub struct MiscType(pub u16);
evdev_enum!( evdev_enum!(
MiscType, MiscType,
Array,
/// Serial number, only exported for tablets ("Transducer Serial Number") /// Serial number, only exported for tablets ("Transducer Serial Number")
MSC_SERIAL = 0x00, MSC_SERIAL = 0x00,
/// Only used by the PowerMate driver, right now. /// Only used by the PowerMate driver, right now.
@ -335,6 +330,7 @@ pub struct SoundType(pub u16);
evdev_enum!( evdev_enum!(
SoundType, SoundType,
Array,
SND_CLICK = 0x00, SND_CLICK = 0x00,
SND_BELL = 0x01, SND_BELL = 0x01,
SND_TONE = 0x02, SND_TONE = 0x02,

93
src/device_state.rs Normal file
View file

@ -0,0 +1,93 @@
use crate::constants::*;
use crate::{AttributeSet, AttributeSetRef, InputEvent, InputEventKind, Key};
use std::time::SystemTime;
/// A cached representation of device state at a certain time.
#[derive(Debug)]
pub struct DeviceState {
/// The state corresponds to kernel state at this timestamp.
pub(crate) timestamp: libc::timeval,
/// Set = key pressed
pub(crate) key_vals: Option<AttributeSet<Key>>,
pub(crate) abs_vals: Option<Box<[libc::input_absinfo; AbsoluteAxisType::COUNT]>>,
/// Set = switch enabled (closed)
pub(crate) switch_vals: Option<AttributeSet<SwitchType>>,
/// Set = LED lit
pub(crate) led_vals: Option<AttributeSet<LedType>>,
}
// manual Clone impl for clone_from optimization
impl Clone for DeviceState {
fn clone(&self) -> Self {
Self {
timestamp: self.timestamp,
key_vals: self.key_vals.clone(),
abs_vals: self.abs_vals.clone(),
switch_vals: self.switch_vals.clone(),
led_vals: self.led_vals.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.timestamp.clone_from(&other.timestamp);
self.key_vals.clone_from(&other.key_vals);
self.abs_vals.clone_from(&other.abs_vals);
self.switch_vals.clone_from(&other.switch_vals);
self.led_vals.clone_from(&other.led_vals);
}
}
impl DeviceState {
/// Returns the time when this snapshot was taken.
pub fn timestamp(&self) -> SystemTime {
crate::timeval_to_systime(&self.timestamp)
}
/// Returns the set of keys pressed when the snapshot was taken.
///
/// Returns `None` if keys are not supported by this device.
pub fn key_vals(&self) -> Option<&AttributeSetRef<Key>> {
self.key_vals.as_deref()
}
/// Returns the set of absolute axis measurements when the snapshot was taken.
///
/// Returns `None` if not supported by this device.
pub fn abs_vals(&self) -> Option<&[libc::input_absinfo]> {
self.abs_vals.as_deref().map(|v| &v[..])
}
/// Returns the set of switches triggered when the snapshot was taken.
///
/// Returns `None` if switches are not supported by this device.
pub fn switch_vals(&self) -> Option<&AttributeSetRef<SwitchType>> {
self.switch_vals.as_deref()
}
/// Returns the set of LEDs turned on when the snapshot was taken.
///
/// Returns `None` if LEDs are not supported by this device.
pub fn led_vals(&self) -> Option<&AttributeSetRef<LedType>> {
self.led_vals.as_deref()
}
#[inline]
pub(crate) fn process_event(&mut self, ev: InputEvent) {
match ev.kind() {
InputEventKind::Key(code) => {
let keys = self
.key_vals
.as_deref_mut()
.expect("got a key event despite not supporting keys");
keys.set(code, ev.value() != 0);
}
InputEventKind::AbsAxis(axis) => {
let axes = self
.abs_vals
.as_deref_mut()
.expect("got an abs event despite not supporting absolute axes");
axes[axis.0 as usize].value = ev.value();
}
_ => {}
}
}
}

104
src/inputid.rs Normal file
View file

@ -0,0 +1,104 @@
use std::fmt;
#[derive(Clone)]
#[repr(transparent)]
pub struct InputId(libc::input_id);
impl From<libc::input_id> for InputId {
#[inline]
fn from(id: libc::input_id) -> Self {
Self(id)
}
}
impl AsRef<libc::input_id> for InputId {
#[inline]
fn as_ref(&self) -> &libc::input_id {
&self.0
}
}
impl InputId {
pub fn bus_type(&self) -> BusType {
BusType(self.0.bustype)
}
pub fn vendor(&self) -> u16 {
self.0.vendor
}
pub fn product(&self) -> u16 {
self.0.product
}
pub fn version(&self) -> u16 {
self.0.version
}
}
impl fmt::Debug for InputId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("InputId")
.field("bus_type", &self.bus_type())
.field("vendor", &format_args!("{:#x}", self.vendor()))
.field("product", &format_args!("{:#x}", self.product()))
.field("version", &format_args!("{:#x}", self.version()))
.finish()
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct BusType(pub u16);
evdev_enum!(
BusType,
BUS_PCI = 0x01,
BUS_ISAPNP = 0x02,
BUS_USB = 0x03,
BUS_HIL = 0x04,
BUS_BLUETOOTH = 0x05,
BUS_VIRTUAL = 0x06,
BUS_ISA = 0x10,
BUS_I8042 = 0x11,
BUS_XTKBD = 0x12,
BUS_RS232 = 0x13,
BUS_GAMEPORT = 0x14,
BUS_PARPORT = 0x15,
BUS_AMIGA = 0x16,
BUS_ADB = 0x17,
BUS_I2C = 0x18,
BUS_HOST = 0x19,
BUS_GSC = 0x1A,
BUS_ATARI = 0x1B,
BUS_SPI = 0x1C,
BUS_RMI = 0x1D,
BUS_CEC = 0x1E,
BUS_INTEL_ISHTP = 0x1F,
);
impl fmt::Display for BusType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let s = match *self {
Self::BUS_PCI => "PCI",
Self::BUS_ISAPNP => "ISA Plug 'n Play",
Self::BUS_USB => "USB",
Self::BUS_HIL => "HIL",
Self::BUS_BLUETOOTH => "Bluetooth",
Self::BUS_VIRTUAL => "Virtual",
Self::BUS_ISA => "ISA",
Self::BUS_I8042 => "i8042",
Self::BUS_XTKBD => "XTKBD",
Self::BUS_RS232 => "RS232",
Self::BUS_GAMEPORT => "Gameport",
Self::BUS_PARPORT => "Parallel Port",
Self::BUS_AMIGA => "Amiga",
Self::BUS_ADB => "ADB",
Self::BUS_I2C => "I2C",
Self::BUS_HOST => "Host",
Self::BUS_GSC => "GSC",
Self::BUS_ATARI => "Atari",
Self::BUS_SPI => "SPI",
Self::BUS_RMI => "RMI",
Self::BUS_CEC => "CEC",
Self::BUS_INTEL_ISHTP => "Intel ISHTP",
_ => "Unknown",
};
f.write_str(s)
}
}

View file

@ -29,10 +29,8 @@
//! ``` //! ```
//! //!
//! This state can be queried. For example, the [`DeviceState::led_vals`] method will tell you which //! This state can be queried. For example, the [`DeviceState::led_vals`] method will tell you which
//! LEDs are currently lit on the device. This state is not automatically synchronized with the //! LEDs are currently lit on the device. As the application reads events, this state will be
//! kernel. However, as the application reads events, this state will be updated if the event is //! updated, and it will be fully synchronized with the kernel if the stream drops any events.
//! newer than the state timestamp (maintained internally). Additionally, you can call
//! [`Device::sync_state`] to explicitly synchronize with the kernel state.
//! //!
//! As the state changes, the kernel will write events into a ring buffer. The application can read //! As the state changes, the kernel will write events into a ring buffer. The application can read
//! from this ring buffer, thus retrieving events. However, if the ring buffer becomes full, the //! from this ring buffer, thus retrieving events. However, if the ring buffer becomes full, the
@ -60,838 +58,33 @@
mod attribute_set; mod attribute_set;
mod constants; mod constants;
mod raw; mod device_state;
mod inputid;
pub mod raw_stream;
mod scancodes; mod scancodes;
mod sync_stream;
mod sys;
#[cfg(feature = "tokio")] #[cfg(feature = "tokio")]
mod tokio_stream; mod tokio_stream;
use bitvec::prelude::*;
use std::collections::VecDeque;
use std::fmt;
use std::fs::{File, OpenOptions};
use std::io;
use std::mem;
use std::os::unix::io::{AsRawFd, RawFd};
use std::path::Path;
use std::time::{Duration, SystemTime}; use std::time::{Duration, SystemTime};
use std::{ffi::CString, mem::MaybeUninit}; use std::{fmt, io};
// pub use crate::constants::FFEffect::*; // pub use crate::constants::FFEffect::*;
pub use crate::attribute_set::AttributeSet; pub use attribute_set::{AttributeSet, AttributeSetRef};
pub use crate::constants::*; pub use constants::*;
pub use crate::scancodes::*; pub use device_state::DeviceState;
#[cfg(feature = "tokio")] pub use inputid::*;
pub use crate::tokio_stream::EventStream; pub use scancodes::*;
pub use sync_stream::*;
fn ioctl_get_cstring( const EVENT_BATCH_SIZE: usize = 32;
f: unsafe fn(RawFd, &mut [u8]) -> nix::Result<libc::c_int>,
fd: RawFd,
) -> Option<CString> {
const CAPACITY: usize = 256;
let mut buf = vec![0; CAPACITY];
match unsafe { f(fd, buf.as_mut_slice()) } {
Ok(len) if len as usize > CAPACITY => {
panic!("ioctl_get_cstring call overran the provided buffer!");
}
Ok(len) if len > 0 => {
// Our ioctl string functions apparently return the number of bytes written, including
// trailing \0.
buf.truncate(len as usize);
assert_eq!(buf.pop().unwrap(), 0);
CString::new(buf).ok()
}
Ok(_) => {
// if len < 0 => Explicit errno
None
}
Err(_) => None,
}
}
const fn bit_elts<T>(bits: usize) -> usize {
let width = mem::size_of::<T>() * 8;
bits / width + (bits % width != 0) as usize
}
// TODO: this is a replacement for BitArr!(for Key::COUNT, in u8), since const generics aren't stable
// and the BitView impls for arrays only goes up to 64
type KeyArray = [u8; bit_elts::<u8>(Key::COUNT)];
#[derive(Debug, Clone)]
/// A cached representation of device state at a certain time.
pub struct DeviceState {
/// The state corresponds to kernel state at this timestamp.
timestamp: libc::timeval,
/// Set = key pressed
key_vals: Option<Box<KeyArray>>,
abs_vals: Option<Box<[libc::input_absinfo; AbsoluteAxisType::COUNT]>>,
/// Set = switch enabled (closed)
switch_vals: Option<BitArr!(for SwitchType::COUNT, in u8)>,
/// Set = LED lit
led_vals: Option<BitArr!(for LedType::COUNT, in u8)>,
}
impl DeviceState {
/// Returns the time when this snapshot was taken.
pub fn timestamp(&self) -> SystemTime {
timeval_to_systime(&self.timestamp)
}
/// Returns the set of keys pressed when the snapshot was taken.
///
/// Returns `None` if keys are not supported by this device.
pub fn key_vals(&self) -> Option<AttributeSet<'_, Key>> {
self.key_vals
.as_deref()
.map(|v| AttributeSet::new(BitSlice::from_slice(v).unwrap()))
}
/// Returns the set of absolute axis measurements when the snapshot was taken.
///
/// Returns `None` if not supported by this device.
pub fn abs_vals(&self) -> Option<&[libc::input_absinfo]> {
self.abs_vals.as_deref().map(|v| &v[..])
}
/// Returns the set of switches triggered when the snapshot was taken.
///
/// Returns `None` if switches are not supported by this device.
pub fn switch_vals(&self) -> Option<AttributeSet<'_, SwitchType>> {
self.switch_vals.as_deref().map(AttributeSet::new)
}
/// Returns the set of LEDs turned on when the snapshot was taken.
///
/// Returns `None` if LEDs are not supported by this device.
pub fn led_vals(&self) -> Option<AttributeSet<'_, LedType>> {
self.led_vals.as_deref().map(AttributeSet::new)
}
}
impl Default for DeviceState {
fn default() -> Self {
DeviceState {
timestamp: libc::timeval {
tv_sec: 0,
tv_usec: 0,
},
key_vals: None,
abs_vals: None,
switch_vals: None,
led_vals: None,
}
}
}
#[derive(Debug)]
/// A physical or virtual device supported by evdev.
///
/// Each device corresponds to a path typically found in `/dev/input`, and supports access via
/// one or more "types". For example, an optical mouse has buttons that are represented by "keys",
/// and reflects changes in its position via "relative axis" reports.
pub struct Device {
file: File,
ty: BitArr!(for EventType::COUNT, in u8),
name: Option<String>,
phys: Option<String>,
uniq: Option<String>,
id: libc::input_id,
props: BitArr!(for PropType::COUNT, in u8),
driver_version: (u8, u8, u8),
supported_keys: Option<Box<KeyArray>>,
supported_relative: Option<BitArr!(for RelativeAxisType::COUNT, in u8)>,
supported_absolute: Option<BitArr!(for AbsoluteAxisType::COUNT, in u8)>,
supported_switch: Option<BitArr!(for SwitchType::COUNT, in u8)>,
supported_led: Option<BitArr!(for LedType::COUNT, in u8)>,
supported_misc: Option<BitArr!(for MiscType::COUNT, in u8)>,
// ff: Option<Box<BitArr!(for _, in u8)>>,
// ff_stat: Option<FFStatus>,
// rep: Option<Repeat>,
supported_snd: Option<BitArr!(for SoundType::COUNT, in u8)>,
pending_events: VecDeque<libc::input_event>,
read_buf: Vec<libc::input_event>,
state: DeviceState,
}
impl AsRawFd for Device {
fn as_raw_fd(&self) -> RawFd {
self.file.as_raw_fd()
}
}
const fn bus_name(x: u16) -> &'static str {
match x {
0x1 => "PCI",
0x2 => "ISA Plug 'n Play",
0x3 => "USB",
0x4 => "HIL",
0x5 => "Bluetooth",
0x6 => "Virtual",
0x10 => "ISA",
0x11 => "i8042",
0x12 => "XTKBD",
0x13 => "RS232",
0x14 => "Gameport",
0x15 => "Parallel Port",
0x16 => "Amiga",
0x17 => "ADB",
0x18 => "I2C",
0x19 => "Host",
0x1A => "GSC",
0x1B => "Atari",
0x1C => "SPI",
_ => "Unknown",
}
}
impl fmt::Display for Device {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "{}:", self.name.as_deref().unwrap_or("Unnamed device"))?;
writeln!(
f,
" Driver version: {}.{}.{}",
self.driver_version.0, self.driver_version.1, self.driver_version.2
)?;
if let Some(ref phys) = self.phys {
writeln!(f, " Physical address: {:?}", phys)?;
}
if let Some(ref uniq) = self.uniq {
writeln!(f, " Unique name: {:?}", uniq)?;
}
writeln!(f, " Bus: {}", bus_name(self.id.bustype))?;
writeln!(f, " Vendor: {:#x}", self.id.vendor)?;
writeln!(f, " Product: {:#x}", self.id.product)?;
writeln!(f, " Version: {:#x}", self.id.version)?;
writeln!(f, " Properties: {:?}", self.properties())?;
if let (Some(supported_keys), Some(key_vals)) =
(self.supported_keys(), self.state.key_vals())
{
writeln!(f, " Keys supported:")?;
for key in supported_keys.iter() {
let key_idx = key.code() as usize;
writeln!(
f,
" {:?} ({}index {})",
key,
if key_vals.contains(key) {
"pressed, "
} else {
""
},
key_idx
)?;
}
}
if let Some(supported_relative) = self.supported_relative_axes() {
writeln!(f, " Relative Axes: {:?}", supported_relative)?;
}
if let (Some(supported_abs), Some(abs_vals)) =
(self.supported_absolute, &self.state.abs_vals)
{
writeln!(f, " Absolute Axes:")?;
for idx in supported_abs.iter_ones() {
let abs = AbsoluteAxisType(idx as u16);
writeln!(f, " {:?} ({:?}, index {})", abs, abs_vals[idx], idx)?;
}
}
if let Some(supported_misc) = self.misc_properties() {
writeln!(f, " Miscellaneous capabilities: {:?}", supported_misc)?;
}
if let (Some(supported_switch), Some(switch_vals)) =
(self.supported_switch, &self.state.switch_vals)
{
writeln!(f, " Switches:")?;
for idx in supported_switch.iter_ones() {
let sw = SwitchType(idx as u16);
writeln!(f, " {:?} ({:?}, index {})", sw, switch_vals[idx], idx)?;
}
}
if let (Some(supported_led), Some(led_vals)) = (self.supported_led, &self.state.led_vals) {
writeln!(f, " LEDs:")?;
for idx in supported_led.iter_ones() {
let led = LedType(idx as u16);
writeln!(f, " {:?} ({:?}, index {})", led, led_vals[idx], idx)?;
}
}
if let Some(supported_snd) = self.supported_snd {
write!(f, " Sounds:")?;
for idx in supported_snd.iter_ones() {
let snd = SoundType(idx as u16);
writeln!(f, " {:?} (index {})", snd, idx)?;
}
}
// if let Some(rep) = self.rep {
// writeln!(f, " Repeats: {:?}", rep)?;
// }
if self.ty[EventType::FORCEFEEDBACK.0 as usize] {
writeln!(f, " Force Feedback supported")?;
}
if self.ty[EventType::POWER.0 as usize] {
writeln!(f, " Power supported")?;
}
if self.ty[EventType::FORCEFEEDBACKSTATUS.0 as usize] {
writeln!(f, " Force Feedback status supported")?;
}
Ok(())
}
}
const DEFAULT_EVENT_COUNT: usize = 32;
impl Device {
#[inline(always)]
/// Opens a device, given its system path.
///
/// Paths are typically something like `/dev/input/event0`.
pub fn open(path: impl AsRef<Path>) -> io::Result<Device> {
Self::_open(path.as_ref())
}
/// Fetches and returns events from the kernel ring buffer without doing synchronization on
/// SYN_DROPPED.
///
/// By default this will block until events are available. Typically, users will want to call
/// this in a tight loop within a thread.
pub fn fetch_events_no_sync(&mut self) -> io::Result<impl Iterator<Item = InputEvent> + '_> {
self.fill_events(DEFAULT_EVENT_COUNT)?;
Ok(self.pending_events.drain(..).map(InputEvent))
}
/// Fetches and returns events from the kernel ring buffer, doing synchronization on SYN_DROPPED.
///
/// By default this will block until events are available. Typically, users will want to call
/// this in a tight loop within a thread.
/// Will insert "fake" events.
pub fn fetch_events(&mut self) -> io::Result<impl Iterator<Item = InputEvent> + '_> {
self.fill_events(DEFAULT_EVENT_COUNT)?;
self.compensate_dropped()?;
Ok(self.pending_events.drain(..).map(InputEvent))
}
#[cfg(feature = "tokio")]
/// Return a `futures::stream` asynchronous stream of `InputEvent` compatible with Tokio.
///
/// The stream does NOT compensate for SYN_DROPPED events and will not update internal cached
/// state.
/// The Tokio runtime is expected to keep up with typical event rates.
/// This operation consumes the Device.
pub fn into_event_stream_no_sync(self) -> io::Result<tokio_stream::EventStream> {
tokio_stream::EventStream::new(self)
}
/// Returns the device's name as read from the kernel.
pub fn name(&self) -> Option<&str> {
self.name.as_deref()
}
/// Returns the device's physical location, either as set by the caller or as read from the kernel.
pub fn physical_path(&self) -> Option<&str> {
self.phys.as_deref()
}
/// Returns the user-defined "unique name" of the device, if one has been set.
pub fn unique_name(&self) -> Option<&str> {
self.uniq.as_deref()
}
/// Returns a struct containing bustype, vendor, product, and version identifiers
pub fn input_id(&self) -> libc::input_id {
self.id
}
/// Returns the set of supported "properties" for the device (see `INPUT_PROP_*` in kernel headers)
pub fn properties(&self) -> AttributeSet<'_, PropType> {
AttributeSet::new(&self.props)
}
/// Returns a tuple of the driver version containing major, minor, rev
pub fn driver_version(&self) -> (u8, u8, u8) {
self.driver_version
}
/// Returns a set of the event types supported by this device (Key, Switch, etc)
///
/// If you're interested in the individual keys or switches supported, it's probably easier
/// to just call the appropriate `supported_*` function instead.
pub fn supported_events(&self) -> AttributeSet<'_, EventType> {
AttributeSet::new(&self.ty)
}
/// Returns the set of supported keys reported by the device.
///
/// For keyboards, this is the set of all possible keycodes the keyboard may emit. Controllers,
/// mice, and other peripherals may also report buttons as keys.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, Key};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does this device have an ENTER key?
/// let supported = device.supported_keys().map_or(false, |keys| keys.contains(Key::KEY_ENTER));
/// # Ok(())
/// # }
/// ```
pub fn supported_keys(&self) -> Option<AttributeSet<'_, Key>> {
self.supported_keys
.as_deref()
.map(|v| AttributeSet::new(BitSlice::from_slice(v).unwrap()))
}
/// Returns the set of supported "relative axes" reported by the device.
///
/// Standard mice will generally report `REL_X` and `REL_Y` along with wheel if supported.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, RelativeAxisType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device have a scroll wheel?
/// let supported = device
/// .supported_relative_axes()
/// .map_or(false, |axes| axes.contains(RelativeAxisType::REL_WHEEL));
/// # Ok(())
/// # }
/// ```
pub fn supported_relative_axes(&self) -> Option<AttributeSet<'_, RelativeAxisType>> {
self.supported_relative.as_deref().map(AttributeSet::new)
}
/// Returns the set of supported "absolute axes" reported by the device.
///
/// These are most typically supported by joysticks and touchpads.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, AbsoluteAxisType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device have an absolute X axis?
/// let supported = device
/// .supported_absolute_axes()
/// .map_or(false, |axes| axes.contains(AbsoluteAxisType::ABS_X));
/// # Ok(())
/// # }
/// ```
pub fn supported_absolute_axes(&self) -> Option<AttributeSet<'_, AbsoluteAxisType>> {
self.supported_absolute.as_deref().map(AttributeSet::new)
}
/// Returns the set of supported switches reported by the device.
///
/// These are typically used for things like software switches on laptop lids (which the
/// system reacts to by suspending or locking), or virtual switches to indicate whether a
/// headphone jack is plugged in (used to disable external speakers).
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, SwitchType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device report a laptop lid switch?
/// let supported = device
/// .supported_switches()
/// .map_or(false, |axes| axes.contains(SwitchType::SW_LID));
/// # Ok(())
/// # }
/// ```
pub fn supported_switches(&self) -> Option<AttributeSet<'_, SwitchType>> {
self.supported_switch.as_deref().map(AttributeSet::new)
}
/// Returns a set of supported LEDs on the device.
///
/// Most commonly these are state indicator lights for things like Scroll Lock, but they
/// can also be found in cameras and other devices.
pub fn supported_leds(&self) -> Option<AttributeSet<'_, LedType>> {
self.supported_led.as_deref().map(AttributeSet::new)
}
/// Returns a set of supported "miscellaneous" capabilities.
///
/// Aside from vendor-specific key scancodes, most of these are uncommon.
pub fn misc_properties(&self) -> Option<AttributeSet<'_, MiscType>> {
self.supported_misc.as_deref().map(AttributeSet::new)
}
// pub fn supported_repeats(&self) -> Option<Repeat> {
// self.rep
// }
/// Returns the set of supported simple sounds supported by a device.
///
/// You can use these to make really annoying beep sounds come from an internal self-test
/// speaker, for instance.
pub fn supported_sounds(&self) -> Option<AttributeSet<'_, SoundType>> {
self.supported_snd.as_deref().map(AttributeSet::new)
}
/// Returns the *cached* state of the device.
///
/// Pulling updates via `fetch_events` or manually invoking `sync_state` will refresh the cache.
pub fn state(&self) -> &DeviceState {
&self.state
}
fn _open(path: &Path) -> io::Result<Device> {
let mut options = OpenOptions::new();
// Try to load read/write, then fall back to read-only.
let file = options
.read(true)
.write(true)
.open(path)
.or_else(|_| options.write(false).open(path))?;
let ty = {
let mut ty = BitArray::zeroed();
unsafe {
raw::eviocgbit_type(file.as_raw_fd(), ty.as_mut_raw_slice()).map_err(nix_err)?
};
ty
};
let name = ioctl_get_cstring(raw::eviocgname, file.as_raw_fd())
.map(|s| s.to_string_lossy().into_owned());
let phys = ioctl_get_cstring(raw::eviocgphys, file.as_raw_fd())
.map(|s| s.to_string_lossy().into_owned());
let uniq = ioctl_get_cstring(raw::eviocguniq, file.as_raw_fd())
.map(|s| s.to_string_lossy().into_owned());
let id = unsafe {
let mut id = MaybeUninit::uninit();
raw::eviocgid(file.as_raw_fd(), id.as_mut_ptr()).map_err(nix_err)?;
id.assume_init()
};
let mut driver_version: i32 = 0;
unsafe {
raw::eviocgversion(file.as_raw_fd(), &mut driver_version).map_err(nix_err)?;
}
let driver_version = (
((driver_version >> 16) & 0xff) as u8,
((driver_version >> 8) & 0xff) as u8,
(driver_version & 0xff) as u8,
);
let props = {
let mut props = BitArray::zeroed();
unsafe {
raw::eviocgprop(file.as_raw_fd(), props.as_mut_raw_slice()).map_err(nix_err)?
};
props
}; // FIXME: handle old kernel
let mut state = DeviceState::default();
let supported_keys = if ty[EventType::KEY.0 as usize] {
const KEY_ARR_INIT: KeyArray = [0; bit_elts::<u8>(Key::COUNT)];
state.key_vals = Some(Box::new(KEY_ARR_INIT));
let mut supported_keys = Box::new(KEY_ARR_INIT);
let key_slice = &mut supported_keys[..];
unsafe { raw::eviocgbit_key(file.as_raw_fd(), key_slice).map_err(nix_err)? };
Some(supported_keys)
} else {
None
};
let supported_relative = if ty[EventType::RELATIVE.0 as usize] {
let mut rel = BitArray::zeroed();
unsafe {
raw::eviocgbit_relative(file.as_raw_fd(), rel.as_mut_raw_slice())
.map_err(nix_err)?
};
Some(rel)
} else {
None
};
let supported_absolute = if ty[EventType::ABSOLUTE.0 as usize] {
#[rustfmt::skip]
const ABSINFO_ZERO: libc::input_absinfo = libc::input_absinfo {
value: 0, minimum: 0, maximum: 0, fuzz: 0, flat: 0, resolution: 0,
};
const ABS_VALS_INIT: [libc::input_absinfo; AbsoluteAxisType::COUNT] =
[ABSINFO_ZERO; AbsoluteAxisType::COUNT];
state.abs_vals = Some(Box::new(ABS_VALS_INIT));
let mut abs = BitArray::zeroed();
unsafe {
raw::eviocgbit_absolute(file.as_raw_fd(), abs.as_mut_raw_slice())
.map_err(nix_err)?
};
Some(abs)
} else {
None
};
let supported_switch = if ty[EventType::SWITCH.0 as usize] {
state.switch_vals = Some(BitArray::zeroed());
let mut switch = BitArray::zeroed();
unsafe {
raw::eviocgbit_switch(file.as_raw_fd(), switch.as_mut_raw_slice())
.map_err(nix_err)?
};
Some(switch)
} else {
None
};
let supported_led = if ty[EventType::LED.0 as usize] {
state.led_vals = Some(BitArray::zeroed());
let mut led = BitArray::zeroed();
unsafe {
raw::eviocgbit_led(file.as_raw_fd(), led.as_mut_raw_slice()).map_err(nix_err)?
};
Some(led)
} else {
None
};
let supported_misc = if ty[EventType::MISC.0 as usize] {
let mut misc = BitArray::zeroed();
unsafe {
raw::eviocgbit_misc(file.as_raw_fd(), misc.as_mut_raw_slice()).map_err(nix_err)?
};
Some(misc)
} else {
None
};
//unsafe { raw::eviocgbit(file.as_raw_fd(), ffs(FORCEFEEDBACK.bits()), 0x7f, bits_as_u8_slice)?; }
let supported_snd = if ty[EventType::SOUND.0 as usize] {
let mut snd = BitArray::zeroed();
unsafe {
raw::eviocgbit_sound(file.as_raw_fd(), snd.as_mut_raw_slice()).map_err(nix_err)?
};
Some(snd)
} else {
None
};
let mut dev = Device {
file,
ty,
name,
phys,
uniq,
id,
props,
driver_version,
supported_keys,
supported_relative,
supported_absolute,
supported_switch,
supported_led,
supported_misc,
supported_snd,
pending_events: VecDeque::with_capacity(64),
read_buf: Vec::new(),
state,
};
dev.sync_state()?;
Ok(dev)
}
/// Synchronize the `Device` state with the kernel device state.
///
/// If there is an error at any point, the state will not be synchronized completely.
pub fn sync_state(&mut self) -> io::Result<()> {
let fd = self.as_raw_fd();
if let Some(key_vals) = &mut self.state.key_vals {
unsafe { raw::eviocgkey(fd, &mut key_vals[..]).map_err(nix_err)? };
}
if let (Some(supported_abs), Some(abs_vals)) =
(self.supported_absolute, &mut self.state.abs_vals)
{
for idx in supported_abs.iter_ones() {
// ignore multitouch, we'll handle that later.
//
// handling later removed. not sure what the intention of "handling that later" was
// the abs data seems to be fine (tested ABS_MT_POSITION_X/Y)
unsafe { raw::eviocgabs(fd, idx as u32, &mut abs_vals[idx]).map_err(nix_err)? };
}
}
if let Some(switch_vals) = &mut self.state.switch_vals {
unsafe { raw::eviocgsw(fd, switch_vals.as_mut_raw_slice()).map_err(nix_err)? };
}
if let Some(led_vals) = &mut self.state.led_vals {
unsafe { raw::eviocgled(fd, led_vals.as_mut_raw_slice()).map_err(nix_err)? };
}
Ok(())
}
/// Do SYN_DROPPED synchronization, and compensate for missing events by inserting events into
/// the stream which, when applied to any state being kept outside of this `Device`, will
/// synchronize it with the kernel state.
fn compensate_dropped(&mut self) -> io::Result<()> {
let mut drop_from = None;
for (idx, event) in self.pending_events.iter().enumerate() {
if event.type_ == EventType::SYNCHRONIZATION.0 && event.code == Synchronization::SYN_DROPPED {
drop_from = Some(idx);
break;
}
}
// FIXME: see if we can *not* drop EV_REL events. EV_REL doesn't have any state, so
// dropping its events isn't really helping much.
if let Some(idx) = drop_from {
// look for the nearest SYN_REPORT before the SYN_DROPPED, remove everything after it.
let mut prev_report = 0; // (if there's no previous SYN_REPORT, then the entire vector is bogus)
for (idx, event) in self.pending_events.iter().take(idx).enumerate().rev() {
if event.type_ == EventType::SYNCHRONIZATION.0 && event.code == Synchronization::SYN_REPORT {
prev_report = idx;
break;
}
}
self.pending_events.truncate(prev_report);
} else {
return Ok(());
}
// Alright, pending_events is in a sane state. Now, let's sync the local state. We will
// create a phony packet that contains deltas from the previous device state to the current
// device state.
let old_state = self.state.clone();
self.sync_state()?;
let time = systime_to_timeval(&SystemTime::now());
if let (Some(supported_keys), Some(key_vals)) =
(&self.supported_keys, self.state.key_vals())
{
let supported_keys =
AttributeSet::new(BitSlice::from_slice(&supported_keys[..]).unwrap());
let old_vals = old_state.key_vals();
for key in supported_keys.iter() {
if old_vals.map(|v| v.contains(key)) != Some(key_vals.contains(key)) {
self.pending_events.push_back(libc::input_event {
time,
type_: EventType::KEY.0 as _,
code: key.code() as u16,
value: if key_vals.contains(key) { 1 } else { 0 },
});
}
}
}
if let (Some(supported_abs), Some(abs_vals)) =
(self.supported_absolute, &self.state.abs_vals)
{
for idx in supported_abs.iter_ones() {
if old_state.abs_vals.as_ref().map(|v| v[idx]) != Some(abs_vals[idx]) {
self.pending_events.push_back(libc::input_event {
time,
type_: EventType::ABSOLUTE.0 as _,
code: idx as u16,
value: abs_vals[idx].value,
});
}
}
}
if let (Some(supported_switch), Some(switch_vals)) =
(self.supported_switch, &self.state.switch_vals)
{
for idx in supported_switch.iter_ones() {
if old_state.switch_vals.as_ref().map(|v| v[idx]) != Some(switch_vals[idx]) {
self.pending_events.push_back(libc::input_event {
time,
type_: EventType::SWITCH.0 as _,
code: idx as u16,
value: if switch_vals[idx] { 1 } else { 0 },
});
}
}
}
if let (Some(supported_led), Some(led_vals)) = (self.supported_led, &self.state.led_vals) {
for idx in supported_led.iter_ones() {
if old_state.led_vals.as_ref().map(|v| v[idx]) != Some(led_vals[idx]) {
self.pending_events.push_back(libc::input_event {
time,
type_: EventType::LED.0 as _,
code: idx as u16,
value: if led_vals[idx] { 1 } else { 0 },
});
}
}
}
self.pending_events.push_back(libc::input_event {
time,
type_: EventType::SYNCHRONIZATION.0 as _,
code: Synchronization::SYN_REPORT,
value: 0,
});
Ok(())
}
/// Read a maximum of `num` events into the internal buffer. If the underlying fd is not
/// O_NONBLOCK, this will block.
///
/// Returns the number of events that were read, or an error.
fn fill_events(&mut self, num: usize) -> io::Result<usize> {
let fd = self.as_raw_fd();
self.read_buf.clear();
self.read_buf.reserve_exact(num);
// TODO: use Vec::spare_capacity_mut or Vec::split_at_spare_mut when they stabilize
let spare_capacity = vec_spare_capacity_mut(&mut self.read_buf);
let (_, uninit_buf, _) = unsafe { spare_capacity.align_to_mut::<mem::MaybeUninit<u8>>() };
// use libc::read instead of nix::unistd::read b/c we need to pass an uninitialized buf
let res = unsafe { libc::read(fd, uninit_buf.as_mut_ptr() as _, uninit_buf.len()) };
let bytes_read = nix::errno::Errno::result(res).map_err(nix_err)?;
let num_read = bytes_read as usize / mem::size_of::<libc::input_event>();
unsafe {
let len = self.read_buf.len();
self.read_buf.set_len(len + num_read);
}
self.pending_events.extend(self.read_buf.drain(..));
Ok(num_read)
}
#[cfg(feature = "tokio")]
fn pop_event(&mut self) -> Option<InputEvent> {
self.pending_events.pop_front().map(InputEvent)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// A convenience mapping from an event `(type, code)` to an enumeration. /// A convenience mapping from an event `(type, code)` to an enumeration.
/// ///
/// Note that this does not capture an event's value, just the type and code. /// Note that this does not capture an event's value, just the type and code.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum InputEventKind { pub enum InputEventKind {
Synchronization(Synchronization), Synchronization(Synchronization),
Key(Key), Key(Key),
@ -904,7 +97,6 @@ pub enum InputEventKind {
Other, Other,
} }
#[repr(transparent)]
/// A wrapped `libc::input_event` returned by the input device via the kernel. /// A wrapped `libc::input_event` returned by the input device via the kernel.
/// ///
/// `input_event` is a struct containing four fields: /// `input_event` is a struct containing four fields:
@ -914,23 +106,24 @@ pub enum InputEventKind {
/// - `value: s32` /// - `value: s32`
/// ///
/// The meaning of the "code" and "value" fields will depend on the underlying type of event. /// The meaning of the "code" and "value" fields will depend on the underlying type of event.
#[repr(transparent)]
pub struct InputEvent(libc::input_event); pub struct InputEvent(libc::input_event);
impl InputEvent { impl InputEvent {
#[inline]
/// Returns the timestamp associated with the event. /// Returns the timestamp associated with the event.
#[inline]
pub fn timestamp(&self) -> SystemTime { pub fn timestamp(&self) -> SystemTime {
timeval_to_systime(&self.0.time) timeval_to_systime(&self.0.time)
} }
#[inline]
/// Returns the type of event this describes, e.g. Key, Switch, etc. /// Returns the type of event this describes, e.g. Key, Switch, etc.
#[inline]
pub fn event_type(&self) -> EventType { pub fn event_type(&self) -> EventType {
EventType(self.0.type_) EventType(self.0.type_)
} }
#[inline]
/// Returns the raw "code" field directly from input_event. /// Returns the raw "code" field directly from input_event.
#[inline]
pub fn code(&self) -> u16 { pub fn code(&self) -> u16 {
self.0.code self.0.code
} }
@ -956,11 +149,11 @@ impl InputEvent {
} }
} }
#[inline]
/// Returns the raw "value" field directly from input_event. /// Returns the raw "value" field directly from input_event.
/// ///
/// For keys and switches the values 0 and 1 map to pressed and not pressed respectively. /// For keys and switches the values 0 and 1 map to pressed and not pressed respectively.
/// For axes, the values depend on the hardware and driver implementation. /// For axes, the values depend on the hardware and driver implementation.
#[inline]
pub fn value(&self) -> i32 { pub fn value(&self) -> i32 {
self.0.value self.0.value
} }
@ -972,8 +165,8 @@ impl From<libc::input_event> for InputEvent {
} }
} }
impl<'a> Into<&'a libc::input_event> for &'a InputEvent { impl AsRef<libc::input_event> for InputEvent {
fn into(self) -> &'a libc::input_event { fn as_ref(&self) -> &libc::input_event {
&self.0 &self.0
} }
} }
@ -1043,7 +236,7 @@ fn timeval_to_systime(tv: &libc::timeval) -> SystemTime {
} }
} }
fn nix_err(err: nix::Error) -> io::Error { pub(crate) fn nix_err(err: nix::Error) -> io::Error {
match err { match err {
nix::Error::Sys(errno) => io::Error::from_raw_os_error(errno as i32), nix::Error::Sys(errno) => io::Error::from_raw_os_error(errno as i32),
nix::Error::InvalidPath => io::Error::new(io::ErrorKind::InvalidInput, err), nix::Error::InvalidPath => io::Error::new(io::ErrorKind::InvalidInput, err),
@ -1053,18 +246,6 @@ fn nix_err(err: nix::Error) -> io::Error {
} }
} }
/// A copy of the unstable Vec::spare_capacity_mut
#[inline]
fn vec_spare_capacity_mut<T>(v: &mut Vec<T>) -> &mut [mem::MaybeUninit<T>] {
let (len, cap) = (v.len(), v.capacity());
unsafe {
std::slice::from_raw_parts_mut(
v.as_mut_ptr().add(len) as *mut mem::MaybeUninit<T>,
cap - len,
)
}
}
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use std::mem::MaybeUninit; use std::mem::MaybeUninit;

515
src/raw_stream.rs Normal file
View file

@ -0,0 +1,515 @@
use std::fs::{File, OpenOptions};
use std::mem::MaybeUninit;
use std::os::unix::io::{AsRawFd, RawFd};
use std::path::Path;
use std::{io, mem};
use crate::constants::*;
use crate::{nix_err, sys, AttributeSet, AttributeSetRef, DeviceState, InputEvent, InputId, Key};
fn ioctl_get_cstring(
f: unsafe fn(RawFd, &mut [u8]) -> nix::Result<libc::c_int>,
fd: RawFd,
) -> Option<Vec<u8>> {
let mut buf = vec![0; 256];
match unsafe { f(fd, buf.as_mut_slice()) } {
Ok(len) if len as usize > buf.capacity() => {
panic!("ioctl_get_cstring call overran the provided buffer!");
}
Ok(len) if len > 1 => {
// Our ioctl string functions apparently return the number of bytes written, including
// trailing \0.
buf.truncate(len as usize);
assert_eq!(buf.pop().unwrap(), 0);
Some(buf)
}
_ => None,
}
}
fn bytes_into_string_lossy(v: Vec<u8>) -> String {
String::from_utf8(v).unwrap_or_else(|v| String::from_utf8_lossy(v.as_bytes()).into_owned())
}
/// A physical or virtual device supported by evdev.
///
/// Each device corresponds to a path typically found in `/dev/input`, and supports access via
/// one or more "types". For example, an optical mouse has buttons that are represented by "keys",
/// and reflects changes in its position via "relative axis" reports.
#[derive(Debug)]
pub struct RawDevice {
file: File,
ty: AttributeSet<EventType>,
name: Option<String>,
phys: Option<String>,
uniq: Option<String>,
id: libc::input_id,
props: AttributeSet<PropType>,
driver_version: (u8, u8, u8),
supported_keys: Option<AttributeSet<Key>>,
supported_relative: Option<AttributeSet<RelativeAxisType>>,
supported_absolute: Option<AttributeSet<AbsoluteAxisType>>,
supported_switch: Option<AttributeSet<SwitchType>>,
supported_led: Option<AttributeSet<LedType>>,
supported_misc: Option<AttributeSet<MiscType>>,
// ff: Option<AttributeSet<_>>,
// ff_stat: Option<FFStatus>,
// rep: Option<Repeat>,
supported_snd: Option<AttributeSet<SoundType>>,
pub(crate) event_buf: Vec<libc::input_event>,
}
impl RawDevice {
/// Opens a device, given its system path.
///
/// Paths are typically something like `/dev/input/event0`.
#[inline(always)]
pub fn open(path: impl AsRef<Path>) -> io::Result<RawDevice> {
Self::_open(path.as_ref())
}
fn _open(path: &Path) -> io::Result<RawDevice> {
let mut options = OpenOptions::new();
// Try to load read/write, then fall back to read-only.
let file = options
.read(true)
.write(true)
.open(path)
.or_else(|_| options.write(false).open(path))?;
let ty = {
let mut ty = AttributeSet::<EventType>::new();
unsafe {
sys::eviocgbit_type(file.as_raw_fd(), ty.as_mut_raw_slice()).map_err(nix_err)?
};
ty
};
let name =
ioctl_get_cstring(sys::eviocgname, file.as_raw_fd()).map(bytes_into_string_lossy);
let phys =
ioctl_get_cstring(sys::eviocgphys, file.as_raw_fd()).map(bytes_into_string_lossy);
let uniq =
ioctl_get_cstring(sys::eviocguniq, file.as_raw_fd()).map(bytes_into_string_lossy);
let id = unsafe {
let mut id = MaybeUninit::uninit();
sys::eviocgid(file.as_raw_fd(), id.as_mut_ptr()).map_err(nix_err)?;
id.assume_init()
};
let mut driver_version: i32 = 0;
unsafe {
sys::eviocgversion(file.as_raw_fd(), &mut driver_version).map_err(nix_err)?;
}
let driver_version = (
((driver_version >> 16) & 0xff) as u8,
((driver_version >> 8) & 0xff) as u8,
(driver_version & 0xff) as u8,
);
let props = {
let mut props = AttributeSet::<PropType>::new();
unsafe {
sys::eviocgprop(file.as_raw_fd(), props.as_mut_raw_slice()).map_err(nix_err)?
};
props
}; // FIXME: handle old kernel
let supported_keys = if ty.contains(EventType::KEY) {
let mut keys = AttributeSet::<Key>::new();
unsafe {
sys::eviocgbit_key(file.as_raw_fd(), keys.as_mut_raw_slice()).map_err(nix_err)?
};
Some(keys)
} else {
None
};
let supported_relative = if ty.contains(EventType::RELATIVE) {
let mut rel = AttributeSet::<RelativeAxisType>::new();
unsafe {
sys::eviocgbit_relative(file.as_raw_fd(), rel.as_mut_raw_slice())
.map_err(nix_err)?
};
Some(rel)
} else {
None
};
let supported_absolute = if ty.contains(EventType::ABSOLUTE) {
let mut abs = AttributeSet::<AbsoluteAxisType>::new();
unsafe {
sys::eviocgbit_absolute(file.as_raw_fd(), abs.as_mut_raw_slice())
.map_err(nix_err)?
};
Some(abs)
} else {
None
};
let supported_switch = if ty.contains(EventType::SWITCH) {
let mut switch = AttributeSet::<SwitchType>::new();
unsafe {
sys::eviocgbit_switch(file.as_raw_fd(), switch.as_mut_raw_slice())
.map_err(nix_err)?
};
Some(switch)
} else {
None
};
let supported_led = if ty.contains(EventType::LED) {
let mut led = AttributeSet::<LedType>::new();
unsafe {
sys::eviocgbit_led(file.as_raw_fd(), led.as_mut_raw_slice()).map_err(nix_err)?
};
Some(led)
} else {
None
};
let supported_misc = if ty.contains(EventType::MISC) {
let mut misc = AttributeSet::<MiscType>::new();
unsafe {
sys::eviocgbit_misc(file.as_raw_fd(), misc.as_mut_raw_slice()).map_err(nix_err)?
};
Some(misc)
} else {
None
};
//unsafe { sys::eviocgbit(file.as_raw_fd(), ffs(FORCEFEEDBACK.bits()), 0x7f, bits_as_u8_slice)?; }
let supported_snd = if ty.contains(EventType::SOUND) {
let mut snd = AttributeSet::<SoundType>::new();
unsafe {
sys::eviocgbit_sound(file.as_raw_fd(), snd.as_mut_raw_slice()).map_err(nix_err)?
};
Some(snd)
} else {
None
};
Ok(RawDevice {
file,
ty,
name,
phys,
uniq,
id,
props,
driver_version,
supported_keys,
supported_relative,
supported_absolute,
supported_switch,
supported_led,
supported_misc,
supported_snd,
event_buf: Vec::new(),
})
}
/// Returns the device's name as read from the kernel.
pub fn name(&self) -> Option<&str> {
self.name.as_deref()
}
/// Returns the device's physical location, either as set by the caller or as read from the kernel.
pub fn physical_path(&self) -> Option<&str> {
self.phys.as_deref()
}
/// Returns the user-defined "unique name" of the device, if one has been set.
pub fn unique_name(&self) -> Option<&str> {
self.uniq.as_deref()
}
/// Returns a struct containing bustype, vendor, product, and version identifiers
pub fn input_id(&self) -> InputId {
InputId::from(self.id)
}
/// Returns the set of supported "properties" for the device (see `INPUT_PROP_*` in kernel headers)
pub fn properties(&self) -> &AttributeSetRef<PropType> {
&self.props
}
/// Returns a tuple of the driver version containing major, minor, rev
pub fn driver_version(&self) -> (u8, u8, u8) {
self.driver_version
}
/// Returns a set of the event types supported by this device (Key, Switch, etc)
///
/// If you're interested in the individual keys or switches supported, it's probably easier
/// to just call the appropriate `supported_*` function instead.
pub fn supported_events(&self) -> &AttributeSetRef<EventType> {
&self.ty
}
/// Returns the set of supported keys reported by the device.
///
/// For keyboards, this is the set of all possible keycodes the keyboard may emit. Controllers,
/// mice, and other peripherals may also report buttons as keys.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, Key};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does this device have an ENTER key?
/// let supported = device.supported_keys().map_or(false, |keys| keys.contains(Key::KEY_ENTER));
/// # Ok(())
/// # }
/// ```
pub fn supported_keys(&self) -> Option<&AttributeSetRef<Key>> {
self.supported_keys.as_deref()
}
/// Returns the set of supported "relative axes" reported by the device.
///
/// Standard mice will generally report `REL_X` and `REL_Y` along with wheel if supported.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, RelativeAxisType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device have a scroll wheel?
/// let supported = device
/// .supported_relative_axes()
/// .map_or(false, |axes| axes.contains(RelativeAxisType::REL_WHEEL));
/// # Ok(())
/// # }
/// ```
pub fn supported_relative_axes(&self) -> Option<&AttributeSetRef<RelativeAxisType>> {
self.supported_relative.as_deref()
}
/// Returns the set of supported "absolute axes" reported by the device.
///
/// These are most typically supported by joysticks and touchpads.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, AbsoluteAxisType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device have an absolute X axis?
/// let supported = device
/// .supported_absolute_axes()
/// .map_or(false, |axes| axes.contains(AbsoluteAxisType::ABS_X));
/// # Ok(())
/// # }
/// ```
pub fn supported_absolute_axes(&self) -> Option<&AttributeSetRef<AbsoluteAxisType>> {
self.supported_absolute.as_deref()
}
/// Returns the set of supported switches reported by the device.
///
/// These are typically used for things like software switches on laptop lids (which the
/// system reacts to by suspending or locking), or virtual switches to indicate whether a
/// headphone jack is plugged in (used to disable external speakers).
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, SwitchType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device report a laptop lid switch?
/// let supported = device
/// .supported_switches()
/// .map_or(false, |axes| axes.contains(SwitchType::SW_LID));
/// # Ok(())
/// # }
/// ```
pub fn supported_switches(&self) -> Option<&AttributeSetRef<SwitchType>> {
self.supported_switch.as_deref()
}
/// Returns a set of supported LEDs on the device.
///
/// Most commonly these are state indicator lights for things like Scroll Lock, but they
/// can also be found in cameras and other devices.
pub fn supported_leds(&self) -> Option<&AttributeSetRef<LedType>> {
self.supported_led.as_deref()
}
/// Returns a set of supported "miscellaneous" capabilities.
///
/// Aside from vendor-specific key scancodes, most of these are uncommon.
pub fn misc_properties(&self) -> Option<&AttributeSetRef<MiscType>> {
self.supported_misc.as_deref()
}
// pub fn supported_repeats(&self) -> Option<Repeat> {
// self.rep
// }
/// Returns the set of supported simple sounds supported by a device.
///
/// You can use these to make really annoying beep sounds come from an internal self-test
/// speaker, for instance.
pub fn supported_sounds(&self) -> Option<&AttributeSetRef<SoundType>> {
self.supported_snd.as_deref()
}
/// Read a maximum of `num` events into the internal buffer. If the underlying fd is not
/// O_NONBLOCK, this will block.
///
/// Returns the number of events that were read, or an error.
pub(crate) fn fill_events(&mut self) -> io::Result<usize> {
let fd = self.as_raw_fd();
self.event_buf.reserve(crate::EVENT_BATCH_SIZE);
// TODO: use Vec::spare_capacity_mut or Vec::split_at_spare_mut when they stabilize
let spare_capacity = vec_spare_capacity_mut(&mut self.event_buf);
let (_, uninit_buf, _) = unsafe { spare_capacity.align_to_mut::<mem::MaybeUninit<u8>>() };
// use libc::read instead of nix::unistd::read b/c we need to pass an uninitialized buf
let res = unsafe { libc::read(fd, uninit_buf.as_mut_ptr() as _, uninit_buf.len()) };
let bytes_read = nix::errno::Errno::result(res).map_err(nix_err)?;
let num_read = bytes_read as usize / mem::size_of::<libc::input_event>();
unsafe {
let len = self.event_buf.len();
self.event_buf.set_len(len + num_read);
}
Ok(num_read)
}
/// Fetches and returns events from the kernel ring buffer without doing synchronization on
/// SYN_DROPPED.
///
/// By default this will block until events are available. Typically, users will want to call
/// this in a tight loop within a thread.
pub fn fetch_events(&mut self) -> io::Result<impl Iterator<Item = InputEvent> + '_> {
self.fill_events()?;
Ok(self.event_buf.drain(..).map(InputEvent))
}
/// Create an empty `DeviceState`. The `{abs,key,etc}_vals` for the returned state will return
/// `Some` if `self.supported_events()` contains that `EventType`.
pub fn empty_state(&self) -> DeviceState {
let supports = self.supported_events();
let key_vals = if supports.contains(EventType::KEY) {
Some(AttributeSet::new())
} else {
None
};
let abs_vals = if supports.contains(EventType::ABSOLUTE) {
#[rustfmt::skip]
const ABSINFO_ZERO: libc::input_absinfo = libc::input_absinfo {
value: 0, minimum: 0, maximum: 0, fuzz: 0, flat: 0, resolution: 0,
};
const ABS_VALS_INIT: [libc::input_absinfo; AbsoluteAxisType::COUNT] =
[ABSINFO_ZERO; AbsoluteAxisType::COUNT];
Some(Box::new(ABS_VALS_INIT))
} else {
None
};
let switch_vals = if supports.contains(EventType::SWITCH) {
Some(AttributeSet::new())
} else {
None
};
let led_vals = if supports.contains(EventType::LED) {
Some(AttributeSet::new())
} else {
None
};
DeviceState {
timestamp: libc::timeval {
tv_sec: 0,
tv_usec: 0,
},
key_vals,
abs_vals,
switch_vals,
led_vals,
}
}
pub fn sync_state(&self, state: &mut DeviceState) -> io::Result<()> {
self.sync_key_state(state)?;
self.sync_abs_state(state)?;
self.sync_switch_state(state)?;
self.sync_led_state(state)?;
Ok(())
}
pub fn sync_key_state(&self, state: &mut DeviceState) -> io::Result<()> {
if let Some(key_vals) = &mut state.key_vals {
unsafe {
sys::eviocgkey(self.as_raw_fd(), key_vals.as_mut_raw_slice()).map_err(nix_err)?
};
}
Ok(())
}
pub fn sync_abs_state(&self, state: &mut DeviceState) -> io::Result<()> {
if let (Some(supported_abs), Some(abs_vals)) =
(self.supported_absolute_axes(), &mut state.abs_vals)
{
for AbsoluteAxisType(idx) in supported_abs.iter() {
// ignore multitouch, we'll handle that later.
//
// handling later removed. not sure what the intention of "handling that later" was
// the abs data seems to be fine (tested ABS_MT_POSITION_X/Y)
unsafe {
sys::eviocgabs(self.as_raw_fd(), idx as u32, &mut abs_vals[idx as usize])
.map_err(nix_err)?
};
}
}
Ok(())
}
pub fn sync_switch_state(&self, state: &mut DeviceState) -> io::Result<()> {
if let Some(switch_vals) = &mut state.switch_vals {
unsafe {
sys::eviocgsw(self.as_raw_fd(), switch_vals.as_mut_raw_slice()).map_err(nix_err)?
};
}
Ok(())
}
pub fn sync_led_state(&self, state: &mut DeviceState) -> io::Result<()> {
if let Some(led_vals) = &mut state.led_vals {
unsafe {
sys::eviocgled(self.as_raw_fd(), led_vals.as_mut_raw_slice()).map_err(nix_err)?
};
}
Ok(())
}
}
impl AsRawFd for RawDevice {
fn as_raw_fd(&self) -> RawFd {
self.file.as_raw_fd()
}
}
/// A copy of the unstable Vec::spare_capacity_mut
#[inline]
fn vec_spare_capacity_mut<T>(v: &mut Vec<T>) -> &mut [mem::MaybeUninit<T>] {
let (len, cap) = (v.len(), v.capacity());
unsafe {
std::slice::from_raw_parts_mut(
v.as_mut_ptr().add(len) as *mut mem::MaybeUninit<T>,
cap - len,
)
}
}

View file

@ -3,7 +3,7 @@
/// Each associated constant for this struct represents a distinct key. /// Each associated constant for this struct represents a distinct key.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)] #[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[repr(transparent)] #[repr(transparent)]
pub struct Key(u16); pub struct Key(pub u16);
impl Key { impl Key {
#[inline] #[inline]
@ -19,8 +19,22 @@ impl Key {
pub(crate) const COUNT: usize = 0x300; pub(crate) const COUNT: usize = 0x300;
} }
const fn bit_elts<T>(bits: usize) -> usize {
let width = std::mem::size_of::<T>() * 8;
bits / width + (bits % width != 0) as usize
}
// TODO: replace with BitArr!() once const generics is stable and BitView is implemented for any [T; N]
const KEY_ARRAY_LEN: usize = bit_elts::<u8>(Key::COUNT);
type KeyArray = [u8; KEY_ARRAY_LEN];
const KEY_ARRAY_INIT: KeyArray = [0; KEY_ARRAY_LEN];
evdev_enum!( evdev_enum!(
Key, Key,
Array: Box<[u8; KEY_ARRAY_LEN]>,
|x| bitvec::slice::BitSlice::from_slice(&x[..]).unwrap(),
|x| bitvec::slice::BitSlice::from_slice_mut(&mut x[..]).unwrap(),
|x| &mut x[..],
|| Box::new(KEY_ARRAY_INIT),
KEY_RESERVED = 0, KEY_RESERVED = 0,
KEY_ESC = 1, KEY_ESC = 1,
KEY_1 = 2, KEY_1 = 2,

752
src/sync_stream.rs Normal file
View file

@ -0,0 +1,752 @@
use crate::constants::*;
use crate::raw_stream::RawDevice;
use crate::{AttributeSetRef, DeviceState, InputEvent, InputEventKind, InputId, Key};
use std::os::unix::io::{AsRawFd, RawFd};
use std::path::Path;
use std::{fmt, io};
/// A physical or virtual device supported by evdev.
///
/// Each device corresponds to a path typically found in `/dev/input`, and supports access via
/// one or more "types". For example, an optical mouse has buttons that are represented by "keys",
/// and reflects changes in its position via "relative axis" reports.
///
/// This type specifically is a wrapper over [`RawDevice`],that synchronizes with the kernel's
/// state when events are dropped.
///
/// If `fetch_events()` isn't called often enough and the kernel drops events from its internal
/// buffer, synthetic events will be injected into the iterator returned by `fetch_events()` and
/// [`Device::state()`] will be kept up to date when `fetch_events()` is called.
pub struct Device {
raw: RawDevice,
prev_state: DeviceState,
state: DeviceState,
block_dropped: bool,
}
impl Device {
/// Opens a device, given its system path.
///
/// Paths are typically something like `/dev/input/event0`.
#[inline(always)]
pub fn open(path: impl AsRef<Path>) -> io::Result<Device> {
Self::_open(path.as_ref())
}
fn _open(path: &Path) -> io::Result<Device> {
let raw = RawDevice::open(path)?;
let state = raw.empty_state();
let prev_state = state.clone();
Ok(Device {
raw,
prev_state,
state,
block_dropped: false,
})
}
pub fn state(&self) -> &DeviceState {
&self.state
}
/// Returns the device's name as read from the kernel.
pub fn name(&self) -> Option<&str> {
self.raw.name()
}
/// Returns the device's physical location, either as set by the caller or as read from the kernel.
pub fn physical_path(&self) -> Option<&str> {
self.raw.physical_path()
}
/// Returns the user-defined "unique name" of the device, if one has been set.
pub fn unique_name(&self) -> Option<&str> {
self.raw.unique_name()
}
/// Returns a struct containing bustype, vendor, product, and version identifiers
pub fn input_id(&self) -> InputId {
self.raw.input_id()
}
/// Returns the set of supported "properties" for the device (see `INPUT_PROP_*` in kernel headers)
pub fn properties(&self) -> &AttributeSetRef<PropType> {
self.raw.properties()
}
/// Returns a tuple of the driver version containing major, minor, rev
pub fn driver_version(&self) -> (u8, u8, u8) {
self.raw.driver_version()
}
/// Returns a set of the event types supported by this device (Key, Switch, etc)
///
/// If you're interested in the individual keys or switches supported, it's probably easier
/// to just call the appropriate `supported_*` function instead.
pub fn supported_events(&self) -> &AttributeSetRef<EventType> {
self.raw.supported_events()
}
/// Returns the set of supported keys reported by the device.
///
/// For keyboards, this is the set of all possible keycodes the keyboard may emit. Controllers,
/// mice, and other peripherals may also report buttons as keys.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, Key};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does this device have an ENTER key?
/// let supported = device.supported_keys().map_or(false, |keys| keys.contains(Key::KEY_ENTER));
/// # Ok(())
/// # }
/// ```
pub fn supported_keys(&self) -> Option<&AttributeSetRef<Key>> {
self.raw.supported_keys()
}
/// Returns the set of supported "relative axes" reported by the device.
///
/// Standard mice will generally report `REL_X` and `REL_Y` along with wheel if supported.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, RelativeAxisType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device have a scroll wheel?
/// let supported = device
/// .supported_relative_axes()
/// .map_or(false, |axes| axes.contains(RelativeAxisType::REL_WHEEL));
/// # Ok(())
/// # }
/// ```
pub fn supported_relative_axes(&self) -> Option<&AttributeSetRef<RelativeAxisType>> {
self.raw.supported_relative_axes()
}
/// Returns the set of supported "absolute axes" reported by the device.
///
/// These are most typically supported by joysticks and touchpads.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, AbsoluteAxisType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device have an absolute X axis?
/// let supported = device
/// .supported_absolute_axes()
/// .map_or(false, |axes| axes.contains(AbsoluteAxisType::ABS_X));
/// # Ok(())
/// # }
/// ```
pub fn supported_absolute_axes(&self) -> Option<&AttributeSetRef<AbsoluteAxisType>> {
self.raw.supported_absolute_axes()
}
/// Returns the set of supported switches reported by the device.
///
/// These are typically used for things like software switches on laptop lids (which the
/// system reacts to by suspending or locking), or virtual switches to indicate whether a
/// headphone jack is plugged in (used to disable external speakers).
///
/// # Examples
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use evdev::{Device, SwitchType};
/// let device = Device::open("/dev/input/event0")?;
///
/// // Does the device report a laptop lid switch?
/// let supported = device
/// .supported_switches()
/// .map_or(false, |axes| axes.contains(SwitchType::SW_LID));
/// # Ok(())
/// # }
/// ```
pub fn supported_switches(&self) -> Option<&AttributeSetRef<SwitchType>> {
self.raw.supported_switches()
}
/// Returns a set of supported LEDs on the device.
///
/// Most commonly these are state indicator lights for things like Scroll Lock, but they
/// can also be found in cameras and other devices.
pub fn supported_leds(&self) -> Option<&AttributeSetRef<LedType>> {
self.raw.supported_leds()
}
/// Returns a set of supported "miscellaneous" capabilities.
///
/// Aside from vendor-specific key scancodes, most of these are uncommon.
pub fn misc_properties(&self) -> Option<&AttributeSetRef<MiscType>> {
self.raw.misc_properties()
}
// pub fn supported_repeats(&self) -> Option<Repeat> {
// self.rep
// }
/// Returns the set of supported simple sounds supported by a device.
///
/// You can use these to make really annoying beep sounds come from an internal self-test
/// speaker, for instance.
pub fn supported_sounds(&self) -> Option<&AttributeSetRef<SoundType>> {
self.raw.supported_sounds()
}
/// Fetches and returns events from the kernel ring buffer, doing synchronization on SYN_DROPPED.
///
/// By default this will block until events are available. Typically, users will want to call
/// this in a tight loop within a thread.
/// Will insert "fake" events.
pub fn fetch_events(&mut self) -> io::Result<FetchEventsSynced<'_>> {
let block_dropped = std::mem::take(&mut self.block_dropped);
let sync = if block_dropped {
self.prev_state.clone_from(&self.state);
self.raw.sync_state(&mut self.state)?;
Some(SyncState::Keys {
time: crate::systime_to_timeval(&std::time::SystemTime::now()),
start: Key::new(0),
})
} else {
None
};
self.raw.fill_events()?;
Ok(FetchEventsSynced {
dev: self,
range: 0..0,
consumed_to: 0,
sync,
})
}
#[cfg(feature = "tokio")]
pub fn into_event_stream(self) -> io::Result<EventStream> {
EventStream::new(self)
}
}
impl AsRawFd for Device {
fn as_raw_fd(&self) -> RawFd {
self.raw.as_raw_fd()
}
}
/// An iterator over events of a [`Device`], produced by [`Device::fetch_events`].
pub struct FetchEventsSynced<'a> {
dev: &'a mut Device,
/// The current block of the events we're returning to the consumer. If empty
/// (i.e. for any x, range == x..x) then we'll find another block on the next `next()` call.
range: std::ops::Range<usize>,
/// The index into dev.raw.event_buf up to which we'll delete events when dropped.
consumed_to: usize,
/// Our current synchronization state, i.e. whether we're currently diffing key_vals,
/// abs_vals, switch_vals, led_vals, or none of them.
sync: Option<SyncState>,
}
enum SyncState {
Keys {
time: libc::timeval,
start: Key,
},
Absolutes {
time: libc::timeval,
start: AbsoluteAxisType,
},
Switches {
time: libc::timeval,
start: SwitchType,
},
Leds {
time: libc::timeval,
start: LedType,
},
}
#[inline]
fn compensate_events(state: &mut Option<SyncState>, dev: &mut Device) -> Option<InputEvent> {
let sync = state.as_mut()?;
// this macro checks if there are any differences between the old state and the new for the
// specific substate(?) that we're checking and if so returns an input_event with the value set
// to the value from the up-to-date state
macro_rules! try_compensate {
($time:expr, $start:ident : $typ:ident, $evtype:ident, $sync:ident, $supporteds:ident, $state:ty, $get_state:expr, $get_value:expr) => {
if let Some(supported_types) = dev.$supporteds() {
let types_to_check = supported_types.slice(*$start);
let get_state: fn(&DeviceState) -> $state = $get_state;
let vals = get_state(&dev.state);
let old_vals = get_state(&dev.prev_state);
let get_value: fn($state, $typ) -> _ = $get_value;
for typ in types_to_check.iter() {
let prev = get_value(old_vals, typ);
let value = get_value(vals, typ);
if prev != value {
$start.0 = typ.0 + 1;
let ev = InputEvent(libc::input_event {
time: *$time,
type_: EventType::$evtype.0,
code: typ.0,
value: value as _,
});
return Some(ev);
}
}
}
};
}
loop {
// check keys, then abs axes, then switches, then leds
match sync {
SyncState::Keys { time, start } => {
try_compensate!(
time,
start: Key,
KEY,
Keys,
supported_keys,
&AttributeSetRef<Key>,
|st| st.key_vals().unwrap(),
|vals, key| vals.contains(key)
);
*sync = SyncState::Absolutes {
time: *time,
start: AbsoluteAxisType(0),
};
continue;
}
SyncState::Absolutes { time, start } => {
try_compensate!(
time,
start: AbsoluteAxisType,
ABSOLUTE,
Absolutes,
supported_absolute_axes,
&[libc::input_absinfo],
|st| st.abs_vals().unwrap(),
|vals, abs| vals[abs.0 as usize].value
);
*sync = SyncState::Switches {
time: *time,
start: SwitchType(0),
};
continue;
}
SyncState::Switches { time, start } => {
try_compensate!(
time,
start: SwitchType,
SWITCH,
Switches,
supported_switches,
&AttributeSetRef<SwitchType>,
|st| st.switch_vals().unwrap(),
|vals, sw| vals.contains(sw)
);
*sync = SyncState::Leds {
time: *time,
start: LedType(0),
};
continue;
}
SyncState::Leds { time, start } => {
try_compensate!(
time,
start: LedType,
LED,
Leds,
supported_leds,
&AttributeSetRef<LedType>,
|st| st.led_vals().unwrap(),
|vals, led| vals.contains(led)
);
let ev = InputEvent(libc::input_event {
time: *time,
type_: EventType::SYNCHRONIZATION.0,
code: Synchronization::SYN_REPORT.0,
value: 0,
});
*state = None;
return Some(ev);
}
}
}
}
impl<'a> Iterator for FetchEventsSynced<'a> {
type Item = InputEvent;
fn next(&mut self) -> Option<InputEvent> {
// first: check if we need to emit compensatory events due to a SYN_DROPPED we found in the
// last batch of blocks
if let Some(ev) = compensate_events(&mut self.sync, &mut self.dev) {
return Some(ev);
}
let state = &mut self.dev.state;
let (res, consumed_to) = sync_events(&mut self.range, &self.dev.raw.event_buf, |ev| {
state.process_event(ev)
});
if let Some(end) = consumed_to {
self.consumed_to = end
}
match res {
Ok(ev) => Some(InputEvent(ev)),
Err(requires_sync) => {
if requires_sync {
self.dev.block_dropped = true;
}
None
}
}
}
}
impl<'a> Drop for FetchEventsSynced<'a> {
fn drop(&mut self) {
self.dev.raw.event_buf.drain(..self.consumed_to);
}
}
/// Err(true) means the device should sync the state with ioctl
#[inline]
fn sync_events(
range: &mut std::ops::Range<usize>,
event_buf: &[libc::input_event],
mut handle_event: impl FnMut(InputEvent),
) -> (Result<libc::input_event, bool>, Option<usize>) {
let mut consumed_to = None;
let res = 'outer: loop {
if let Some(idx) = range.next() {
// we're going through and emitting the events of a block that we checked
break Ok(event_buf[idx]);
}
// find the range of this new block: look for a SYN_REPORT
let block_start = range.end;
let mut block_dropped = false;
for (i, ev) in event_buf.iter().enumerate().skip(block_start) {
let ev = InputEvent(*ev);
match ev.kind() {
InputEventKind::Synchronization(Synchronization::SYN_DROPPED) => {
block_dropped = true;
}
InputEventKind::Synchronization(Synchronization::SYN_REPORT) => {
consumed_to = Some(i + 1);
if block_dropped {
*range = event_buf.len()..event_buf.len();
break 'outer Err(true);
} else {
*range = block_start..i + 1;
continue 'outer;
}
}
_ => handle_event(ev),
}
}
break Err(false);
};
(res, consumed_to)
}
impl fmt::Display for Device {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "{}:", self.name().unwrap_or("Unnamed device"))?;
let (maj, min, pat) = self.driver_version();
writeln!(f, " Driver version: {}.{}.{}", maj, min, pat)?;
if let Some(ref phys) = self.physical_path() {
writeln!(f, " Physical address: {:?}", phys)?;
}
if let Some(ref uniq) = self.unique_name() {
writeln!(f, " Unique name: {:?}", uniq)?;
}
let id = self.input_id();
writeln!(f, " Bus: {}", id.bus_type())?;
writeln!(f, " Vendor: {:#x}", id.vendor())?;
writeln!(f, " Product: {:#x}", id.product())?;
writeln!(f, " Version: {:#x}", id.version())?;
writeln!(f, " Properties: {:?}", self.properties())?;
if let (Some(supported_keys), Some(key_vals)) =
(self.supported_keys(), self.state.key_vals())
{
writeln!(f, " Keys supported:")?;
for key in supported_keys.iter() {
let key_idx = key.code() as usize;
writeln!(
f,
" {:?} ({}index {})",
key,
if key_vals.contains(key) {
"pressed, "
} else {
""
},
key_idx
)?;
}
}
if let Some(supported_relative) = self.supported_relative_axes() {
writeln!(f, " Relative Axes: {:?}", supported_relative)?;
}
if let (Some(supported_abs), Some(abs_vals)) =
(self.supported_absolute_axes(), &self.state.abs_vals)
{
writeln!(f, " Absolute Axes:")?;
for abs in supported_abs.iter() {
writeln!(
f,
" {:?} ({:?}, index {})",
abs, abs_vals[abs.0 as usize], abs.0
)?;
}
}
if let Some(supported_misc) = self.misc_properties() {
writeln!(f, " Miscellaneous capabilities: {:?}", supported_misc)?;
}
if let (Some(supported_switch), Some(switch_vals)) =
(self.supported_switches(), self.state.switch_vals())
{
writeln!(f, " Switches:")?;
for sw in supported_switch.iter() {
writeln!(
f,
" {:?} ({:?}, index {})",
sw,
switch_vals.contains(sw),
sw.0
)?;
}
}
if let (Some(supported_led), Some(led_vals)) =
(self.supported_leds(), self.state.led_vals())
{
writeln!(f, " LEDs:")?;
for led in supported_led.iter() {
writeln!(
f,
" {:?} ({:?}, index {})",
led,
led_vals.contains(led),
led.0
)?;
}
}
if let Some(supported_snd) = self.supported_sounds() {
write!(f, " Sounds:")?;
for snd in supported_snd.iter() {
writeln!(f, " {:?} (index {})", snd, snd.0)?;
}
}
// if let Some(rep) = self.rep {
// writeln!(f, " Repeats: {:?}", rep)?;
// }
let evs = self.supported_events();
if evs.contains(EventType::FORCEFEEDBACK) {
writeln!(f, " Force Feedback supported")?;
}
if evs.contains(EventType::POWER) {
writeln!(f, " Power supported")?;
}
if evs.contains(EventType::FORCEFEEDBACKSTATUS) {
writeln!(f, " Force Feedback status supported")?;
}
Ok(())
}
}
#[cfg(feature = "tokio")]
mod tokio_stream {
use super::*;
use tokio_1 as tokio;
use crate::nix_err;
use futures_core::{ready, Stream};
use std::collections::VecDeque;
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio::io::unix::AsyncFd;
/// An asynchronous stream of input events.
///
/// This can be used by calling [`stream.next_event().await?`](Self::next_event), or if you
/// need to pass it as a stream somewhere, the [`futures::Stream`](Stream) implementation.
/// There's also a lower-level [`poll_event`] function if you need to fetch an event from
/// inside a `Future::poll` impl.
pub struct EventStream {
device: AsyncFd<Device>,
events: VecDeque<InputEvent>,
}
impl Unpin for EventStream {}
impl EventStream {
pub(crate) fn new(device: Device) -> io::Result<Self> {
use nix::fcntl;
fcntl::fcntl(device.as_raw_fd(), fcntl::F_SETFL(fcntl::OFlag::O_NONBLOCK))
.map_err(nix_err)?;
let device = AsyncFd::new(device)?;
Ok(Self {
device,
events: VecDeque::new(),
})
}
/// Returns a reference to the underlying device
pub fn device(&self) -> &Device {
self.device.get_ref()
}
/// Try to wait for the next event in this stream. Any errors are likely to be fatal, i.e.
/// any calls afterwards will likely error as well.
pub async fn next_event(&mut self) -> io::Result<InputEvent> {
poll_fn(|cx| self.poll_event(cx)).await
}
/// A lower-level function for directly polling this stream.
pub fn poll_event(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<InputEvent>> {
let Self { device, events } = self;
if let Some(ev) = events.pop_front() {
return Poll::Ready(Ok(ev));
}
loop {
let mut guard = ready!(device.poll_read_ready_mut(cx))?;
let res = guard.try_io(|device| {
events.extend(device.get_mut().fetch_events()?);
Ok(())
});
match res {
Ok(res) => {
let () = res?;
let ret = match events.pop_front() {
Some(ev) => Poll::Ready(Ok(ev)),
None => Poll::Pending,
};
return ret;
}
Err(_would_block) => continue,
}
}
}
}
impl Stream for EventStream {
type Item = io::Result<InputEvent>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.get_mut().poll_event(cx).map(Some)
}
}
// version of futures_util::future::poll_fn
fn poll_fn<T, F: FnMut(&mut Context<'_>) -> Poll<T> + Unpin>(f: F) -> PollFn<F> {
PollFn(f)
}
struct PollFn<F>(F);
impl<T, F: FnMut(&mut Context<'_>) -> Poll<T> + Unpin> std::future::Future for PollFn<F> {
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
(self.get_mut().0)(cx)
}
}
}
#[cfg(feature = "tokio")]
pub use tokio_stream::EventStream;
#[cfg(test)]
mod tests {
use super::*;
fn result_events_iter(
events: &[libc::input_event],
) -> impl Iterator<Item = Result<libc::input_event, ()>> + '_ {
let mut range = 0..0;
std::iter::from_fn(move || {
let (res, _) = sync_events(&mut range, events, |_| {});
match res {
Ok(x) => Some(Ok(x)),
Err(true) => Some(Err(())),
Err(false) => None,
}
})
}
fn events_iter(events: &[libc::input_event]) -> impl Iterator<Item = libc::input_event> + '_ {
result_events_iter(events).flatten()
}
#[allow(non_upper_case_globals)]
const time: libc::timeval = libc::timeval {
tv_sec: 0,
tv_usec: 0,
};
const KEY4: libc::input_event = libc::input_event {
time,
type_: EventType::KEY.0,
code: Key::KEY_4.0,
value: 1,
};
const REPORT: libc::input_event = libc::input_event {
time,
type_: EventType::SYNCHRONIZATION.0,
code: Synchronization::SYN_REPORT.0,
value: 0,
};
const DROPPED: libc::input_event = libc::input_event {
code: Synchronization::SYN_DROPPED.0,
..REPORT
};
#[test]
fn test_sync_impl() {
itertools::assert_equal(events_iter(&[]), vec![]);
itertools::assert_equal(events_iter(&[KEY4]), vec![]);
itertools::assert_equal(events_iter(&[KEY4, REPORT]), vec![KEY4, REPORT]);
itertools::assert_equal(events_iter(&[KEY4, REPORT, KEY4]), vec![KEY4, REPORT]);
itertools::assert_equal(
result_events_iter(&[KEY4, REPORT, KEY4, DROPPED, REPORT]),
vec![Ok(KEY4), Ok(REPORT), Err(())],
);
}
#[test]
fn test_iter_consistency() {
// once it sees a SYN_DROPPED, it shouldn't mark the block after it as consumed even if we
// keep calling the iterator like an idiot
let evs = &[KEY4, REPORT, DROPPED, REPORT, KEY4, REPORT, KEY4];
let mut range = 0..0;
let mut next = || sync_events(&mut range, evs, |_| {});
assert_eq!(next(), (Ok(KEY4), Some(2)));
assert_eq!(next(), (Ok(REPORT), None));
assert_eq!(next(), (Err(true), Some(4)));
assert_eq!(next(), (Err(false), None));
assert_eq!(next(), (Err(false), None));
assert_eq!(next(), (Err(false), None));
}
}

View file

@ -1,58 +1 @@
use tokio_1 as tokio;
use crate::{nix_err, Device, InputEvent, DEFAULT_EVENT_COUNT};
use futures_core::{ready, Stream};
use std::io;
use std::os::unix::io::AsRawFd;
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio::io::unix::AsyncFd;
/// An async stream of events.
pub struct EventStream {
device: AsyncFd<Device>,
}
impl Unpin for EventStream {}
impl EventStream {
pub(crate) fn new(device: Device) -> io::Result<Self> {
use nix::fcntl;
fcntl::fcntl(device.as_raw_fd(), fcntl::F_SETFL(fcntl::OFlag::O_NONBLOCK))
.map_err(nix_err)?;
let device = AsyncFd::new(device)?;
Ok(Self { device })
}
/// Returns a reference to the underlying device
pub fn device(&self) -> &Device {
self.device.get_ref()
}
}
impl Stream for EventStream {
type Item = io::Result<InputEvent>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let me = self.get_mut();
if let Some(ev) = me.device.get_mut().pop_event() {
return Poll::Ready(Some(Ok(ev)));
}
loop {
let mut guard = ready!(me.device.poll_read_ready_mut(cx))?;
match guard.try_io(|device| device.get_mut().fill_events(DEFAULT_EVENT_COUNT)) {
Ok(res) => {
let ret = match res {
Ok(0) => None,
Ok(_) => Some(Ok(me.device.get_mut().pop_event().unwrap())),
Err(e) if e.raw_os_error() == Some(libc::ENODEV) => None,
Err(e) => Some(Err(e)),
};
return Poll::Ready(ret);
}
Err(_would_block) => continue,
}
}
}
}