rFactor2_vk_hud/src/overlay/rfactor_data.rs

338 lines
11 KiB
Rust

use anyhow::Result;
use cgmath::{ortho, vec2, vec3, InnerSpace, Matrix4, Vector2, Vector3, VectorSpace};
use rfactor_sm_reader::*;
use vulkan_rs::prelude::*;
use std::{sync::Arc, time::Instant};
use super::rendering::PositionOnlyVertex;
use crate::write_log;
fn convert_vec(v: rF2Vec3) -> Vector3<f32> {
vec3(v.x as f32, v.y as f32, v.z as f32)
}
pub trait RenderObject {
fn descriptor(&self) -> &Arc<DescriptorSet>;
fn buffer(&self) -> &Arc<Buffer<PositionOnlyVertex>>;
}
pub struct DataConfig {
pub radar_scale: f32,
pub radar_car_distance: f32,
pub safe_color: Vector3<f32>,
pub danger_color: Vector3<f32>,
}
pub struct RFactorData {
// config
config: DataConfig,
// rf2 memory mapped data
telemetry_reader: TelemetryReader,
scoring_reader: ScoringReader,
// radar objects
background: RadarObject,
player_car: RadarObject,
cars: Vec<RadarObject>,
// game info
player_id: Option<i32>,
// math objects
radar_center: Vector2<f32>,
ortho: Matrix4<f32>,
window_width: u32,
window_height: u32,
radar_extent: f32,
car_width: f32,
car_height: f32,
start_time: Instant,
device: Arc<Device>,
descriptor_layout: Arc<DescriptorSetLayout>,
}
impl RFactorData {
pub fn new(
config: DataConfig,
device: Arc<Device>,
descriptor_layout: &Arc<DescriptorSetLayout>,
width: u32,
height: u32,
) -> Result<Self> {
write_log!(" =================== create RFactorData ===================");
let radar_extent = width as f32 * 0.075 * config.radar_scale;
let car_height = radar_extent * 0.2;
let car_width = car_height * 0.5;
let radar_center = vec2(
width as f32 / 2.0,
height as f32 / 2.0 + height as f32 * 0.25,
);
let ortho = ortho(0.0, width as f32, 0.0, height as f32, -1.0, 1.0);
let start_time = Instant::now();
Ok(Self {
config,
telemetry_reader: TelemetryReader::new(start_time.elapsed().as_secs_f32())?,
scoring_reader: ScoringReader::new(start_time.elapsed().as_secs_f32())?,
background: RadarObject::new(
device.clone(),
descriptor_layout,
PositionOnlyVertex::from_2d_corners(
ortho,
[
vec2(radar_center.x - radar_extent, radar_center.y - radar_extent),
vec2(radar_center.x - radar_extent, radar_center.y + radar_extent),
vec2(radar_center.x + radar_extent, radar_center.y + radar_extent),
vec2(radar_center.x + radar_extent, radar_center.y - radar_extent),
],
),
[0.5, 0.5, 0.5, 0.5],
)?,
player_car: RadarObject::new(
device.clone(),
descriptor_layout,
PositionOnlyVertex::from_2d_corners(
ortho,
[
vec2(radar_center.x - car_width, radar_center.y - car_height),
vec2(radar_center.x - car_width, radar_center.y + car_height),
vec2(radar_center.x + car_width, radar_center.y + car_height),
vec2(radar_center.x + car_width, radar_center.y - car_height),
],
),
[0.9, 0.9, 0.0, 0.9],
)?,
cars: Vec::new(),
player_id: None,
radar_center,
ortho,
window_width: width,
window_height: height,
radar_extent,
car_width,
car_height,
start_time,
device,
descriptor_layout: descriptor_layout.clone(),
})
}
fn create_car_object(&self, offset: Vector2<f32>, color: [f32; 4]) -> Result<RadarObject> {
write_log!(" =================== create car object ===================");
RadarObject::new(
self.device.clone(),
&self.descriptor_layout,
PositionOnlyVertex::from_2d_corners(
self.ortho,
[
vec2(
self.radar_center.x - self.car_width + offset.x,
self.radar_center.y - self.car_height + offset.y,
),
vec2(
self.radar_center.x - self.car_width + offset.x,
self.radar_center.y + self.car_height + offset.y,
),
vec2(
self.radar_center.x + self.car_width + offset.x,
self.radar_center.y + self.car_height + offset.y,
),
vec2(
self.radar_center.x + self.car_width + offset.x,
self.radar_center.y - self.car_height + offset.y,
),
],
),
color,
)
}
fn now(&self) -> f32 {
self.start_time.elapsed().as_secs_f32()
}
pub fn update(&mut self) -> Result<()> {
write_log!(" =================== update RFactorData ===================");
// get scoring info
if let Some((scoring_info, vehicle_scorings)) =
self.scoring_reader.vehicle_scoring(self.now())
{
write_log!(format!(
"new scoring info: vehicles: {}",
scoring_info.mNumVehicles
));
// check for player id
if scoring_info.mNumVehicles == 0 {
self.player_id = None;
} else if self.player_id.is_none() {
for vehicle_scoring in vehicle_scorings.iter() {
if vehicle_scoring.mIsPlayer != 0 {
write_log!(format!("player found: {}", vehicle_scoring.mID));
self.player_id = Some(vehicle_scoring.mID);
break;
}
}
}
}
// if player id is set (a map is loaded), check telemetry data
if let Some(player_id) = &self.player_id {
write_log!("before telemetry update");
if let Some(telemetries) = self.telemetry_reader.query_telemetry(self.now()) {
write_log!("new telemetry update");
let mut player_position = CarPosition::default();
let mut other_positions = Vec::new();
for telemetry in telemetries {
if telemetry.id == *player_id {
player_position.position = convert_vec(telemetry.position);
player_position.local_rotation = convert_vec(telemetry.local_rotation);
} else {
other_positions.push(CarPosition {
position: convert_vec(telemetry.position),
local_rotation: convert_vec(telemetry.local_rotation),
});
}
}
// update radar objects
// naive way: clear cars and create them new if near enough
self.cars.clear();
for other_position in other_positions {
let diff = player_position.position - other_position.position;
let distance = diff.magnitude();
// check if car is close enough the players car
if distance < self.config.radar_car_distance {
let distance_ratio = distance / self.config.radar_car_distance;
let offset =
diff.truncate() * (self.radar_extent / self.config.radar_car_distance);
let color = self
.config
.danger_color
.lerp(self.config.safe_color, distance_ratio);
self.cars.push(
self.create_car_object(offset, [color.x, color.y, color.z, 0.9])?,
);
}
}
}
}
Ok(())
}
pub fn objects(&self) -> Vec<&dyn RenderObject> {
write_log!(" =================== get objects of RFactorData ===================");
let mut objects: Vec<&dyn RenderObject> = Vec::new();
// only draw radar when player is loaded into a map
if let Some(player_id) = &self.player_id {
// only draw radar when any car is near enough
if !self.cars.is_empty() {
objects.push(&self.background);
for other_player_cars in &self.cars {
objects.push(other_player_cars);
}
objects.push(&self.player_car);
}
}
objects
}
}
struct RadarObject {
descriptor_set: Arc<DescriptorSet>,
// uniform buffer
color_buffer: Arc<Buffer<f32>>,
// vertex buffer
position_buffer: Arc<Buffer<PositionOnlyVertex>>,
}
impl RadarObject {
fn new(
device: Arc<Device>,
descriptor_layout: &Arc<DescriptorSetLayout>,
positions: [PositionOnlyVertex; 6],
color: [f32; 4],
) -> Result<Self> {
let color_buffer = Buffer::builder()
.set_usage(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
.set_memory_usage(MemoryUsage::CpuOnly)
.set_data(&color)
.build(device.clone())?;
let position_buffer = Buffer::builder()
.set_usage(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT)
.set_memory_usage(MemoryUsage::CpuOnly)
.set_data(&positions)
.build(device.clone())?;
let descriptor_pool = DescriptorPool::builder()
.set_layout(descriptor_layout.clone())
.build(device.clone())?;
let descriptor_set = descriptor_pool.prepare_set().allocate()?;
descriptor_set.update(&[DescriptorWrite::uniform_buffers(0, &[&color_buffer])])?;
Ok(Self {
descriptor_set,
color_buffer,
position_buffer,
})
}
pub fn update_color(&self, color: [f32; 4]) -> Result<()> {
self.color_buffer.fill(&color)
}
}
impl RenderObject for RadarObject {
fn descriptor(&self) -> &Arc<DescriptorSet> {
&self.descriptor_set
}
fn buffer(&self) -> &Arc<Buffer<PositionOnlyVertex>> {
&self.position_buffer
}
}
struct CarPosition {
pub position: Vector3<f32>,
pub local_rotation: Vector3<f32>,
}
impl Default for CarPosition {
fn default() -> Self {
Self {
position: vec3(0.0, 0.0, 0.0),
local_rotation: vec3(0.0, 0.0, 0.0),
}
}
}