232 lines
5.3 KiB
Rust
232 lines
5.3 KiB
Rust
|
use cgmath::prelude::*;
|
||
|
|
||
|
use cgmath::{vec3, vec4, InnerSpace, Matrix4, Point3, Vector3};
|
||
|
|
||
|
use image::ImageBuffer;
|
||
|
use utilities::prelude::*;
|
||
|
|
||
|
use std::f32::{consts::PI as M_PI, MAX};
|
||
|
|
||
|
struct Triangle {
|
||
|
points: [Vector3<f32>; 3],
|
||
|
}
|
||
|
|
||
|
impl Triangle {
|
||
|
pub fn new(v0: Vector3<f32>, v1: Vector3<f32>, v2: Vector3<f32>) -> Triangle {
|
||
|
Triangle {
|
||
|
points: [v0, v1, v2],
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct View {
|
||
|
position: Vector3<f32>,
|
||
|
look_at: Vector3<f32>,
|
||
|
fov: f32,
|
||
|
}
|
||
|
|
||
|
fn main() {
|
||
|
let input_data = [Triangle::new(
|
||
|
vec3(0.0, 0.0, 0.0),
|
||
|
vec3(1.0, 0.0, 0.0),
|
||
|
vec3(1.0, 1.0, 0.0),
|
||
|
)];
|
||
|
|
||
|
let view = View {
|
||
|
position: vec3(0.0, -4.0, 4.0),
|
||
|
look_at: vec3(0.0, 0.0, 0.0),
|
||
|
fov: 45.0,
|
||
|
};
|
||
|
|
||
|
let (origin, direction) = calculate_ray(640, 360, 1280, 720, &view);
|
||
|
|
||
|
let color = pixel_color(origin, direction, &input_data);
|
||
|
|
||
|
//debug_raytracer(1280, 720, &view, &input_data);
|
||
|
}
|
||
|
|
||
|
fn f_to_u(color: f32) -> u8 {
|
||
|
((color * 255.0) / 1.0) as u8
|
||
|
}
|
||
|
|
||
|
fn calculate_ray(
|
||
|
x: u32,
|
||
|
y: u32,
|
||
|
dim_x: u32,
|
||
|
dim_y: u32,
|
||
|
view: &View,
|
||
|
) -> (Vector3<f32>, Vector3<f32>) {
|
||
|
let aspect_ratio = dim_x as f32 / dim_y as f32;
|
||
|
|
||
|
let p_x = (2.0 * ((x as f32 + 0.5) / dim_x as f32) - 1.0)
|
||
|
* (view.fov / 2.0 * M_PI / 180.0).tan()
|
||
|
* aspect_ratio;
|
||
|
let p_y = (1.0 - 2.0 * (((dim_y - y) as f32 + 0.5) / dim_y as f32))
|
||
|
* (view.fov / 2.0 * M_PI / 180.0).tan();
|
||
|
|
||
|
let camera_to_world = Matrix4::look_at(
|
||
|
Point3::from_vec(view.position),
|
||
|
Point3::from_vec(view.look_at),
|
||
|
vec3(0.0, 0.0, 1.0),
|
||
|
)
|
||
|
.inverse_transform()
|
||
|
.unwrap();
|
||
|
|
||
|
let origin = camera_to_world * vec4(0.0, 0.0, 0.0, 1.0);
|
||
|
let direction = camera_to_world * vec4(p_x, p_y, -1.0, 1.0);
|
||
|
|
||
|
(origin.truncate(), direction.truncate().normalize())
|
||
|
}
|
||
|
|
||
|
fn debug_raytracer(dim_x: u32, dim_y: u32, view: &View, data: &[Triangle]) {
|
||
|
let mut imgbuf = ImageBuffer::new(dim_x, dim_y);
|
||
|
|
||
|
for (x, y, pixel) in imgbuf.enumerate_pixels_mut() {
|
||
|
let (origin, direction) = calculate_ray(x, y, dim_x, dim_y, view);
|
||
|
|
||
|
let color = pixel_color(origin, direction, data);
|
||
|
|
||
|
*pixel = image::Rgb([f_to_u(color.x), f_to_u(color.y), f_to_u(color.z)]);
|
||
|
}
|
||
|
|
||
|
imgbuf.save("raytrace.png").unwrap();
|
||
|
}
|
||
|
|
||
|
fn pixel_color(orig: Vector3<f32>, dir: Vector3<f32>, data: &[Triangle]) -> Vector3<f32> {
|
||
|
let mut final_color = vec3(0.0, 1.0, 0.0);
|
||
|
let mut closest_value = MAX;
|
||
|
let mut closest_index = -1;
|
||
|
|
||
|
for i in 0..data.len() {
|
||
|
let v0 = data[i].points[0];
|
||
|
let v1 = data[i].points[1];
|
||
|
let v2 = data[i].points[2];
|
||
|
let mut t = 0.0;
|
||
|
|
||
|
if ray_triangle_intersect_naive(orig, dir, v0, v1, v2, &mut t) {
|
||
|
if t < closest_value {
|
||
|
closest_index = i as i32;
|
||
|
closest_value = t;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if closest_index != -1 {
|
||
|
final_color = vec3(1.0, 0.0, 0.0);
|
||
|
}
|
||
|
|
||
|
return final_color;
|
||
|
}
|
||
|
|
||
|
// source: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
|
||
|
fn ray_triangle_intersect_mt(
|
||
|
orig: Vector3<f32>,
|
||
|
dir: Vector3<f32>,
|
||
|
v0: Vector3<f32>,
|
||
|
v1: Vector3<f32>,
|
||
|
v2: Vector3<f32>,
|
||
|
t: &mut f32,
|
||
|
) -> bool {
|
||
|
let v0v1 = v1 - v0;
|
||
|
let v0v2 = v2 - v0;
|
||
|
let pvec = dir.cross(v0v2);
|
||
|
let det = v0v1.dot(pvec);
|
||
|
|
||
|
// ray and triangle are parallel if det is close to 0
|
||
|
if det.abs() < 0.001 {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
let inv_det = 1.0 / det;
|
||
|
|
||
|
let tvec = orig - v0;
|
||
|
let u = tvec.dot(pvec) * inv_det;
|
||
|
|
||
|
if u < 0.0 || u > 1.0 {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
let qvec = tvec.cross(v0v1);
|
||
|
let v = dir.dot(qvec) * inv_det;
|
||
|
|
||
|
if v < 0.0 || u + v > 1.0 {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
*t = v0v2.dot(qvec) * inv_det;
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
fn ray_triangle_intersect_naive(
|
||
|
orig: Vector3<f32>,
|
||
|
dir: Vector3<f32>,
|
||
|
v0: Vector3<f32>,
|
||
|
v1: Vector3<f32>,
|
||
|
v2: Vector3<f32>,
|
||
|
t: &mut f32,
|
||
|
) -> bool {
|
||
|
// compute plane's normal
|
||
|
let v0v1 = v1 - v0;
|
||
|
let v0v2 = v2 - v0;
|
||
|
// no need to normalize
|
||
|
let N = v0v1.cross(v0v2);
|
||
|
let area2 = N.magnitude();
|
||
|
|
||
|
// Step 1: finding P
|
||
|
|
||
|
// check if ray and plane are parallel ?
|
||
|
let NdotRayDirection = N.dot(dir);
|
||
|
if NdotRayDirection.abs() < 0.001
|
||
|
// almost 0
|
||
|
{
|
||
|
return false;
|
||
|
} // they are parallel so they don't intersect !
|
||
|
|
||
|
// compute d parameter using equation 2
|
||
|
let d = N.dot(v0);
|
||
|
|
||
|
// compute t (equation 3)
|
||
|
*t = (N.dot(orig) + d) / NdotRayDirection;
|
||
|
|
||
|
// check if the triangle is in behind the ray
|
||
|
if *t < 0.0 {
|
||
|
return false;
|
||
|
} // the triangle is behind
|
||
|
|
||
|
// compute the intersection point using equation 1
|
||
|
let P = orig + *t * dir;
|
||
|
|
||
|
// Step 2: inside-outside test
|
||
|
let mut C; // vector perpendicular to triangle's plane
|
||
|
|
||
|
// edge 0
|
||
|
let edge0 = v1 - v0;
|
||
|
let vp0 = P - v0;
|
||
|
|
||
|
C = edge0.cross(vp0);
|
||
|
if N.dot(C) < 0.0 {
|
||
|
return false;
|
||
|
} // P is on the right side
|
||
|
|
||
|
// edge 1
|
||
|
let edge1 = v2 - v1;
|
||
|
let vp1 = P - v1;
|
||
|
|
||
|
C = edge1.cross(vp1);
|
||
|
if N.dot(C) < 0.0 {
|
||
|
return false;
|
||
|
} // P is on the right side
|
||
|
|
||
|
// edge 2
|
||
|
let edge2 = v0 - v2;
|
||
|
let vp2 = P - v2;
|
||
|
|
||
|
C = edge2.cross(vp2);
|
||
|
if N.dot(C) < 0.0 {
|
||
|
return false;
|
||
|
} // P is on the right side;
|
||
|
|
||
|
true // this ray hits the triangle
|
||
|
}
|