cgmath/src/mat.rs

1735 lines
49 KiB
Rust
Raw Normal View History

use core::cast::transmute;
use core::cmp::{Eq, Ord};
use core::ptr::to_unsafe_ptr;
2012-11-25 12:05:47 +00:00
use core::sys::size_of;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
2012-12-08 02:59:10 +00:00
use angle::Angle;
use dim::{Dimensional, ToPtr};
use funs::common::*;
use funs::exponential::*;
2012-12-08 02:59:10 +00:00
use funs::triganomic::{sin, cos};
use num::conv::cast;
2012-12-11 23:55:42 +00:00
use num::types::{Float, Number};
use quat::{Quat, ToQuat};
2012-11-20 06:57:32 +00:00
use vec::{NumericVector, Vec2, Vec3, Vec4};
/**
2012-12-03 22:31:26 +00:00
* The base square matrix trait
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
* * `V` - The type of the row and column vectors. Should have components of a
* floating point type and have the same number of dimensions as the
* number of rows and columns in the matrix.
*/
pub trait Matrix<T,V>: Dimensional<V> ToPtr<T> Eq Neg<self> {
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The column vector at `i`
2012-12-03 22:31:26 +00:00
*/
pure fn col(&self, i: uint) -> V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The row vector at `i`
2012-12-03 22:31:26 +00:00
*/
pure fn row(&self, i: uint) -> V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The identity matrix
2012-12-03 22:31:26 +00:00
*/
static pure fn identity() -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* A matrix with all elements set to zero
2012-12-03 22:31:26 +00:00
*/
2012-11-20 06:57:32 +00:00
static pure fn zero() -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The scalar multiplication of this matrix and `value`
2012-12-03 22:31:26 +00:00
*/
pure fn mul_t(&self, value: T) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix vector product of the matrix and `vec`
2012-12-03 22:31:26 +00:00
*/
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &V) -> V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix addition of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
pure fn add_m(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The difference between the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
pure fn sub_m(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix product of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
pure fn mul_m(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix dot product of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
pure fn dot(&self, other: &self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The determinant of the matrix
2012-12-03 22:31:26 +00:00
*/
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The sum of the main diagonal of the matrix
2012-12-03 22:31:26 +00:00
*/
pure fn trace(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
* Returns the inverse of the matrix
*
* # Return value
*
2012-12-05 08:09:53 +00:00
* * `Some(m)` - if the inversion was successful, where `m` is the inverted matrix
* * `None` - if the inversion was unsuccessful (because the matrix was not invertable)
2012-12-03 22:31:26 +00:00
*/
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<self>;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The transposed matrix
2012-12-03 22:31:26 +00:00
*/
pure fn transpose(&self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is an identity matrix
*
* # Return value
*
* `true` if the matrix is approximately equal to the identity matrix
2012-12-03 22:31:26 +00:00
*/
pure fn is_identity(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is diagonal
*
* # Return value
*
* `true` all the elements outside the main diagonal are approximately
* equal to zero.
2012-12-03 22:31:26 +00:00
*/
pure fn is_diagonal(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is rotated
*
* # Return value
*
* `true` if the matrix is not approximately equal to the identity matrix.
2012-12-03 22:31:26 +00:00
*/
pure fn is_rotated(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is symmetric
*
* # Return value
*
* `true` if the matrix is approximately equal to its transpose).
2012-12-03 22:31:26 +00:00
*/
pure fn is_symmetric(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is invertable
*
* # Return value
*
* `true` if the matrix is invertable
2012-12-03 22:31:26 +00:00
*/
pure fn is_invertible(&self) -> bool;
}
/**
* A mutable matrix
*/
pub trait MutableMatrix<T,V>: Matrix<T,V> {
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* A mutable reference to the column at `i`
*/
fn col_mut(&mut self, i: uint) -> &self/mut V;
/**
* Swap two columns of the matrix in place
*/
fn swap_cols(&mut self, a: uint, b: uint);
/**
* Swap two rows of the matrix in place
*/
fn swap_rows(&mut self, a: uint, b: uint);
2012-12-05 03:49:59 +00:00
/**
* Sets the matrix to `other`
*/
fn set(&mut self, other: &self);
/**
* Sets the matrix to the identity matrix
*/
fn to_identity(&mut self);
/**
* Sets each element of the matrix to zero
*/
fn to_zero(&mut self);
2012-12-05 03:49:59 +00:00
/**
* Multiplies the matrix by a scalar
*/
fn mul_self_t(&mut self, value: T);
/**
* Add the matrix `other` to `self`
*/
fn add_self_m(&mut self, other: &self);
/**
* Subtract the matrix `other` from `self`
*/
fn sub_self_m(&mut self, other: &self);
/**
* Sets the matrix to its inverse
*
* # Failure
*
* Fails if the matrix is not invertable. Make sure you check with the
* `is_invertible` method before you attempt this!
*/
fn invert_self(&mut self);
/**
* Sets the matrix to its transpose
*/
fn transpose_self(&mut self);
}
2012-12-03 22:31:26 +00:00
/**
* A 2 x 2 matrix
2012-12-03 22:31:26 +00:00
*/
pub trait Matrix2<T,V>: Matrix<T,V> {
pure fn to_mat3(&self) -> Mat3<T>;
pure fn to_mat4(&self) -> Mat4<T>;
}
2012-12-03 22:31:26 +00:00
/**
* A 3 x 3 matrix
2012-12-03 22:31:26 +00:00
*/
pub trait Matrix3<T,V>: Matrix<T,V> {
2012-12-08 02:59:10 +00:00
static pure fn from_axis_angle<A:Angle<T>>(axis: &Vec3<T>, theta: A) -> Mat3<T>;
pure fn to_mat4(&self) -> Mat4<T>;
}
2012-12-03 22:31:26 +00:00
/**
* A 4 x 4 matrix
2012-12-03 22:31:26 +00:00
*/
pub trait Matrix4<T,V>: Matrix<T,V> {
}
/**
* A 2 x 2 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
pub impl<T:Copy Float> Mat2<T> {
/**
* Construct a 2 x 2 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1` - the first column of the matrix
* * `c1r0`, `c1r1` - the second column of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0r0 | c1r0 |
* +------+------+
* r1 | c0r1 | c1r1 |
* +------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Mat2::from_cols(Vec2::new(move c0r0, move c0r1),
Vec2::new(move c1r0, move c1r1))
}
/**
* Construct a 2 x 2 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0.x | c1.x |
* +------+------+
* r1 | c0.y | c1.y |
* +------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: move c0,
y: move c1 }
}
/**
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1
* +-----+-----+
* r0 | val | 0 |
* +-----+-----+
* r1 | 0 | val |
* +-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat2<T> {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
Mat2::new(value, _0,
_0, value)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat2<T> {
let _0 = cast(0);
let _1 = cast(1);
// let _0 = Number::from(0); // FIXME: causes ICE
// let _1 = Number::from(1); // FIXME: causes ICE
Mat2::new(_1, _0,
_0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat2<T> {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
Mat2::new(_0, _0,
_0, _0)
}
}
pub impl<T:Copy Float> Mat2<T>: Matrix<T, Vec2<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec2<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec2<T> {
Vec2::new(self[0][i],
self[1][i])
}
2012-12-01 04:19:21 +00:00
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 1 | 0 |
* +----+----+
* r1 | 0 | 1 |
* +----+----+
* ~~~
*/
2012-12-01 04:19:21 +00:00
#[inline(always)]
static pure fn identity() -> Mat2<T> {
2012-12-03 06:19:53 +00:00
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat2::new(_1, _0,
_0, _1)
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 0 | 0 |
* +----+----+
* r1 | 0 | 0 |
* +----+----+
* ~~~
*/
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn zero() -> Mat2<T> {
2012-12-03 06:19:53 +00:00
let _0 = Number::from(0);
Mat2::new(_0, _0,
_0, _0)
2012-11-20 06:57:32 +00:00
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat2<T> {
Mat2::from_cols(self[0].mul_t(value),
self[1].mul_t(value))
}
#[inline(always)]
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]))
}
2012-11-20 06:57:32 +00:00
#[inline(always)]
pure fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)))
}
pure fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T {
self[0][0] * self[1][1] - self[1][0] * self[0][1]
}
pure fn trace(&self) -> T {
2012-11-21 21:27:44 +00:00
self[0][0] + self[1][1]
}
#[inline(always)]
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<Mat2<T>> {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
2012-12-03 01:08:36 +00:00
let d = self.determinant();
if d.fuzzy_eq(&_0) {
None
} else {
Some(Mat2::new( self[1][1]/d, -self[0][1]/d,
-self[1][0]/d, self[0][0]/d))
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat2<T> {
Mat2::new(self[0][0], self[1][0],
self[0][1], self[1][1])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat2::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
self[0][1].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat2::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[1][0].fuzzy_eq(&self[0][1])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
!self.determinant().fuzzy_eq(&_0)
}
}
2012-12-05 03:49:59 +00:00
pub impl<T:Copy Float Sign> Mat2<T>: MutableMatrix<T, Vec2<T>> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec2<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
util::swap(self.col_mut(a),
self.col_mut(b));
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
2012-12-05 03:49:59 +00:00
#[inline(always)]
fn set(&mut self, other: &Mat2<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2012-12-05 03:49:59 +00:00
(*self) = Mat2::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2012-12-05 03:49:59 +00:00
(*self) = Mat2::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat2<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat2<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
}
}
pub impl<T:Copy Float> Mat2<T>: Matrix2<T, Vec2<T>> {
#[inline(always)]
pure fn to_mat3(&self) -> Mat3<T> {
Mat3::from_Mat2(self)
}
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
Mat4::from_Mat2(self)
}
}
pub impl<T:Copy> Mat2<T>: Dimensional<Vec2<T>> {
#[inline(always)]
static pure fn dim() -> uint { 2 }
#[inline(always)]
static pure fn size_of() -> uint { size_of::<Mat2<T>>() }
}
pub impl<T:Copy> Mat2<T>: Index<uint, Vec2<T>> {
#[inline(always)]
2012-12-08 00:00:50 +00:00
pure fn index(&self, i: uint) -> Vec2<T> {
unsafe { do buf_as_slice(
transmute::<*Mat2<T>, *Vec2<T>>(
2012-12-08 00:00:50 +00:00
to_unsafe_ptr(self)), 2) |slice| { slice[i] }
}
}
}
pub impl<T:Copy> Mat2<T>: ToPtr<T> {
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat2<T>, *T>(
2012-12-08 00:00:50 +00:00
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float> Mat2<T>: Neg<Mat2<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat2<T> {
Mat2::from_cols(-self[0], -self[1])
}
}
pub impl<T:Copy Float> Mat2<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat2<T>) -> bool {
2012-11-29 03:49:57 +00:00
self[0] == other[0] &&
self[1] == other[1]
}
#[inline(always)]
pure fn ne(&self, other: &Mat2<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat2<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat2<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1])
}
}
/**
* A 3 x 3 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
pub impl<T:Copy Float> Mat3<T> {
/**
* Construct a 3 x 3 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0r0 | c1r0 | c2r0 |
* +------+------+------+
* r1 | c0r1 | c1r1 | c2r1 |
* +------+------+------+
* r2 | c0r2 | c1r2 | c2r2 |
* +------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0:T, c0r1:T, c0r2:T,
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2),
Vec3::new(move c1r0, move c1r1, move c1r2),
Vec3::new(move c2r0, move c2r1, move c2r2))
}
/**
* Construct a 3 x 3 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0.x | c1.y | c2.z |
* +------+------+------+
* r1 | c0.x | c1.y | c2.z |
* +------+------+------+
* r2 | c0.x | c1.y | c2.z |
* +------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: move c0,
y: move c1,
z: move c2 }
}
/**
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2
* +-----+-----+-----+
* r0 | val | 0 | 0 |
* +-----+-----+-----+
* r1 | 0 | val | 0 |
* +-----+-----+-----+
* r2 | 0 | 0 | val |
* +-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat3<T> {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
Mat3::new(value, _0, _0,
_0, value, _0,
_0, _0, value)
}
#[inline(always)]
static pure fn from_Mat2(m: &Mat2<T>) -> Mat3<T> {
let _0 = cast(0);
let _1 = cast(1);
// let _0 = Number::from(0); // FIXME: causes ICE
// let _1 = Number::from(1); // FIXME: causes ICE
Mat3::new(m[0][0], m[0][1], _0,
m[1][0], m[1][1], _0,
_0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat3<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat3::new(_1, _0, _0,
_0, _1, _0,
_0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat3<T> {
let _0 = cast(0);
Mat3::new(_0, _0, _0,
_0, _0, _0,
_0, _0, _0)
}
}
pub impl<T:Copy Float> Mat3<T>: Matrix<T, Vec3<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec3<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec3<T> {
Vec3::new(self[0][i],
self[1][i],
self[2][i])
}
2012-12-01 04:19:21 +00:00
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 1 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 1 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
2012-12-01 04:19:21 +00:00
#[inline(always)]
static pure fn identity() -> Mat3<T> {
// let _0 = cast(0);
// let _1 = cast(1);
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat3::new(_1, _0, _0,
_0, _1, _0,
_0, _0, _1)
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 0 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 0 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 0 |
* +----+----+----+
* ~~~
*/
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn zero() -> Mat3<T> {
let _0 = Number::from(0);
Mat3::new(_0, _0, _0,
_0, _0, _0,
_0, _0, _0)
2012-11-20 06:57:32 +00:00
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat3<T> {
Mat3::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value))
}
#[inline(always)]
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
Vec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]))
}
2012-11-20 06:57:32 +00:00
#[inline(always)]
pure fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)),
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)))
}
pure fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T {
self.col(0).dot(&self.col(1).cross(&self.col(2)))
}
pure fn trace(&self) -> T {
2012-11-21 21:27:44 +00:00
self[0][0] + self[1][1] + self[2][2]
}
// #[inline(always)]
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<Mat3<T>> {
2012-12-03 01:08:36 +00:00
let d = self.determinant();
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
if d.fuzzy_eq(&_0) {
None
} else {
Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d),
self[2].cross(&self[0]).div_t(d),
self[0].cross(&self[1]).div_t(d))
.transpose())
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat3<T> {
Mat3::new(self[0][0], self[1][0], self[2][0],
self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat3::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
self[0][1].fuzzy_eq(&_0) &&
self[0][2].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0) &&
self[1][2].fuzzy_eq(&_0) &&
self[2][0].fuzzy_eq(&_0) &&
self[2][1].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat3::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
!self.determinant().fuzzy_eq(&_0)
}
}
2012-12-05 03:49:59 +00:00
pub impl<T:Copy Float Sign> Mat3<T>: MutableMatrix<T, Vec3<T>> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec3<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
util::swap(self.col_mut(a),
self.col_mut(b));
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
}
2012-12-05 03:49:59 +00:00
#[inline(always)]
fn set(&mut self, other: &Mat3<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2012-12-05 03:49:59 +00:00
(*self) = Mat3::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2012-12-05 03:49:59 +00:00
(*self) = Mat3::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
self.col_mut(2).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
}
}
pub impl<T:Copy Float> Mat3<T>: Matrix3<T, Vec3<T>> {
2012-12-08 02:59:10 +00:00
#[inline(always)]
static pure fn from_axis_angle<A:Angle<T>>(axis: &Vec3<T>, theta: A) -> Mat3<T> {
let c: T = cos(&theta.to_radians());
let s: T = sin(&theta.to_radians());
let _0: T = cast(0);
let _1: T = cast(1);
// let _0: T = Number::from(0); // FIXME: causes ICE
// let _1: T = Number::from(1); // FIXME: causes ICE
let _1_c: T = _1 - c;
let x = axis.x;
let y = axis.y;
let z = axis.z;
Mat3::new(_1_c * x * x + c, _1_c * x * y + s * z, _1_c * x * z - s * y,
_1_c * x * y - s * z, _1_c * y * y + c, _1_c * y * z + s * x,
_1_c * x * z + s * y, _1_c * y * z - s * x, _1_c * z * z + c)
}
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
Mat4::from_Mat3(self)
}
}
2012-12-03 06:19:53 +00:00
pub impl<T:Copy Float Exp> Mat3<T>: ToQuat<T> {
pure fn to_Quat() -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
2012-12-03 06:19:53 +00:00
let mut s;
let w, x, y, z;
let trace = self.trace();
let _1: T = Number::from(1.0);
let half: T = Number::from(0.5);
if trace >= Number::from(0) {
2012-12-03 06:19:53 +00:00
s = (_1 + trace).sqrt();
w = half * s;
s = half / s;
x = (self[1][2] - self[2][1]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[0][1] - self[1][0]) * s;
} else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) {
2012-12-03 06:19:53 +00:00
s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[1][2] - self[2][1]) * s;
} else if self[1][1] > self[2][2] {
2012-12-03 06:19:53 +00:00
s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[2][0] - self[0][2]) * s;
} else {
2012-12-03 06:19:53 +00:00
s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt();
w = half * s;
s = half / s;
x = (self[2][0] - self[0][2]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[0][1] - self[1][0]) * s;
}
2012-12-03 06:19:53 +00:00
Quat::new(w, x, y, z)
}
}
pub impl<T:Copy> Mat3<T>: Dimensional<Vec3<T>> {
#[inline(always)]
static pure fn dim() -> uint { 3 }
#[inline(always)]
static pure fn size_of() -> uint { size_of::<Mat3<T>>() }
}
pub impl<T:Copy> Mat3<T>: Index<uint, Vec3<T>> {
#[inline(always)]
2012-12-08 00:00:50 +00:00
pure fn index(&self, i: uint) -> Vec3<T> {
unsafe { do buf_as_slice(
transmute::<*Mat3<T>, *Vec3<T>>(
2012-12-08 00:00:50 +00:00
to_unsafe_ptr(self)), 3) |slice| { slice[i] }
}
}
}
pub impl<T:Copy> Mat3<T>: ToPtr<T> {
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat3<T>, *T>(
2012-12-08 00:00:50 +00:00
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float> Mat3<T>: Neg<Mat3<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat3<T> {
Mat3::from_cols(-self[0], -self[1], -self[2])
}
}
pub impl<T:Copy Float> Mat3<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat3<T>) -> bool {
2012-11-29 03:49:57 +00:00
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2]
}
#[inline(always)]
pure fn ne(&self, other: &Mat3<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat3<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat3<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2])
}
}
/**
* A 4 x 4 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
* * `w` - the fourth column vector of the matrix
*/
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
pub impl<T:Copy Float> Mat4<T> {
/**
* Construct a 4 x 4 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix
* * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0r0 | c1r0 | c2r0 | c3r0 |
* +------+------+------+------+
* r1 | c0r1 | c1r1 | c2r1 | c3r1 |
* +------+------+------+------+
* r2 | c0r2 | c1r2 | c2r2 | c3r2 |
* +------+------+------+------+
* r3 | c0r3 | c1r3 | c2r3 | c3r3 |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3),
Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3),
Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3),
Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3))
}
/**
* Construct a 4 x 4 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
* * `c3` - the fourth column vector of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0.x | c1.x | c2.x | c3.x |
* +------+------+------+------+
* r1 | c0.y | c1.y | c2.y | c3.y |
* +------+------+------+------+
* r2 | c0.z | c1.z | c2.z | c3.z |
* +------+------+------+------+
* r3 | c0.w | c1.w | c2.w | c3.w |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec4<T>, c1: Vec4<T>, c2: Vec4<T>, c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: move c0,
y: move c1,
z: move c2,
w: move c3 }
}
/**
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2 c3
* +-----+-----+-----+-----+
* r0 | val | 0 | 0 | 0 |
* +-----+-----+-----+-----+
* r1 | 0 | val | 0 | 0 |
* +-----+-----+-----+-----+
* r2 | 0 | 0 | val | 0 |
* +-----+-----+-----+-----+
* r3 | 0 | 0 | 0 | val |
* +-----+-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat4<T> {
let _0 = cast(0);
Mat4::new(value, _0, _0, _0,
_0, value, _0, _0,
_0, _0, value, _0,
_0, _0, _0, value)
}
#[inline(always)]
static pure fn from_Mat2(m: &Mat2<T>) -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(m[0][0], m[0][1], _0, _0,
m[1][0], m[1][1], _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
#[inline(always)]
static pure fn from_Mat3(m: &Mat3<T>) -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(m[0][0], m[0][1], m[0][2], _0,
m[1][0], m[1][1], m[1][2], _0,
m[2][0], m[2][1], m[2][2], _0,
_0, _0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat4<T> {
let _0 = cast(0);
Mat4::new(_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0)
}
}
pub impl<T:Copy Float Sign> Mat4<T>: Matrix<T, Vec4<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec4<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec4<T> {
Vec4::new(self[0][i],
self[1][i],
self[2][i],
self[3][i])
}
2012-12-01 04:19:21 +00:00
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 1 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 1 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn identity() -> Mat4<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat4::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* ~~~
*/
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn zero() -> Mat4<T> {
let _0 = Number::from(0);
Mat4::new(_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0)
2012-11-20 06:57:32 +00:00
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat4<T> {
Mat4::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value),
self[3].mul_t(value))
}
#[inline(always)]
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]),
self[3].add_v(&other[3]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]),
self[3].sub_v(&other[3]))
}
#[inline(always)]
pure fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
// Surprisingly when building with optimisation turned on this is actually
// faster than writing out the matrix multiplication in expanded form.
// If you don't believe me, see ./test/performance/matrix_mul.rs
Mat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)),
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)),
self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3)))
}
pure fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T {
self[0][0]*Mat3::new(self[1][1], self[2][1], self[3][1],
self[1][2], self[2][2], self[3][2],
2012-12-03 01:08:36 +00:00
self[1][3], self[2][3], self[3][3]).determinant() -
self[1][0]*Mat3::new(self[0][1], self[2][1], self[3][1],
self[0][2], self[2][2], self[3][2],
2012-12-03 01:08:36 +00:00
self[0][3], self[2][3], self[3][3]).determinant() +
self[2][0]*Mat3::new(self[0][1], self[1][1], self[3][1],
self[0][2], self[1][2], self[3][2],
2012-12-03 01:08:36 +00:00
self[0][3], self[1][3], self[3][3]).determinant() -
self[3][0]*Mat3::new(self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2],
2012-12-03 01:08:36 +00:00
self[0][3], self[1][3], self[2][3]).determinant()
}
pure fn trace(&self) -> T {
2012-11-21 21:27:44 +00:00
self[0][0] + self[1][1] + self[2][2] + self[3][3]
}
2012-12-10 00:48:02 +00:00
pure fn inverse(&self) -> Option<Mat4<T>> {
2012-12-03 01:08:36 +00:00
let d = self.determinant();
// let _0 = Number::from(0); // FIXME: Triggers ICE
let _0 = cast(0);
if d.fuzzy_eq(&_0) {
None
} else {
2012-12-10 01:47:36 +00:00
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = *self;
// let mut I: Mat4<T> = Matrix::identity(); // FIXME: there's something wrong with static functions here!
let mut I = Mat4::identity();
2012-12-10 01:47:36 +00:00
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if abs(&A[j][i]) > abs(&A[j][i1]) {
i1 = i;
}
}
2012-12-10 00:48:02 +00:00
unsafe {
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
2012-12-10 01:47:36 +00:00
2012-12-10 00:48:02 +00:00
// Scale col j to have a unit diagonal
I.col_mut(j).div_self_t(&A[j][j]);
A.col_mut(j).div_self_t(&A[j][j]);
2012-12-10 01:47:36 +00:00
2012-12-10 00:48:02 +00:00
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
2012-12-10 01:47:36 +00:00
I.col_mut(i).sub_self_v(&I[j].mul_t(A[i][j]));
A.col_mut(i).sub_self_v(&A[j].mul_t(A[i][j]));
2012-12-10 00:48:02 +00:00
}
}
}
}
Some(I)
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat4<T> {
Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0],
self[0][1], self[1][1], self[2][1], self[3][1],
self[0][2], self[1][2], self[2][2], self[3][2],
self[0][3], self[1][3], self[2][3], self[3][3])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat4::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = cast(0);
self[0][1].fuzzy_eq(&_0) &&
self[0][2].fuzzy_eq(&_0) &&
self[0][3].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0) &&
self[1][2].fuzzy_eq(&_0) &&
self[1][3].fuzzy_eq(&_0) &&
self[2][0].fuzzy_eq(&_0) &&
self[2][1].fuzzy_eq(&_0) &&
self[2][3].fuzzy_eq(&_0) &&
self[3][0].fuzzy_eq(&_0) &&
self[3][1].fuzzy_eq(&_0) &&
self[3][2].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat4::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[0][3].fuzzy_eq(&self[3][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[1][3].fuzzy_eq(&self[3][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2]) &&
self[2][3].fuzzy_eq(&self[3][2]) &&
self[3][0].fuzzy_eq(&self[0][3]) &&
self[3][1].fuzzy_eq(&self[1][3]) &&
self[3][2].fuzzy_eq(&self[2][3])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
let _0 = cast(0);
!self.determinant().fuzzy_eq(&_0)
}
}
2012-12-05 03:49:59 +00:00
pub impl<T:Copy Float Sign> Mat4<T>: MutableMatrix<T, Vec4<T>> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec4<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
util::swap(self.col_mut(a),
self.col_mut(b));
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
self.w.swap(a, b);
}
2012-12-05 03:49:59 +00:00
#[inline(always)]
fn set(&mut self, other: &Mat4<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2012-12-05 03:49:59 +00:00
(*self) = Mat4::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2012-12-05 03:49:59 +00:00
(*self) = Mat4::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
self.col_mut(2).mul_self_t(&value);
self.col_mut(3).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
self.col_mut(3).add_self_v(&other[3]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
self.col_mut(3).sub_self_v(&other[3]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
util::swap(self.col_mut(0).index_mut(3), self.col_mut(3).index_mut(0));
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
util::swap(self.col_mut(1).index_mut(3), self.col_mut(3).index_mut(1));
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
util::swap(self.col_mut(2).index_mut(3), self.col_mut(3).index_mut(2));
util::swap(self.col_mut(3).index_mut(0), self.col_mut(0).index_mut(3));
util::swap(self.col_mut(3).index_mut(1), self.col_mut(1).index_mut(3));
util::swap(self.col_mut(3).index_mut(2), self.col_mut(2).index_mut(3));
}
}
pub impl<T> Mat4<T>: Matrix4<T, Vec4<T>> {
}
pub impl<T:Copy Float> Mat4<T>: Neg<Mat4<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat4<T> {
Mat4::from_cols(-self[0], -self[1], -self[2], -self[3])
}
}
pub impl<T> Mat4<T>: Dimensional<Vec4<T>> {
#[inline(always)]
static pure fn dim() -> uint { 4 }
#[inline(always)]
static pure fn size_of() -> uint { size_of::<Mat4<T>>() }
}
pub impl<T:Copy> Mat4<T>: Index<uint, Vec4<T>> {
#[inline(always)]
2012-12-08 00:00:50 +00:00
pure fn index(&self, i: uint) -> Vec4<T> {
unsafe { do buf_as_slice(
transmute::<*Mat4<T>, *Vec4<T>>(
2012-12-08 00:00:50 +00:00
to_unsafe_ptr(self)), 4) |slice| { slice[i] }
}
}
}
pub impl<T:Copy> Mat4<T>: ToPtr<T> {
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat4<T>, *T>(
2012-12-08 00:00:50 +00:00
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float> Mat4<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat4<T>) -> bool {
2012-11-29 03:49:57 +00:00
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2] &&
self[3] == other[3]
}
#[inline(always)]
pure fn ne(&self, other: &Mat4<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat4<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat4<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}