cgmath/src/rotation.rs

342 lines
11 KiB
Rust
Raw Normal View History

// Copyright 2014 The CGMath Developers. For a full listing of the authors,
2013-09-05 03:55:01 +00:00
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use angle::{Rad, acos};
2014-01-09 00:26:50 +00:00
use approx::ApproxEq;
use matrix::Matrix;
use matrix::{Matrix2, ToMatrix2};
use matrix::{Matrix3, ToMatrix3};
2014-05-26 17:10:04 +00:00
use num::{BaseNum, BaseFloat};
use point::{Point, Point2, Point3};
use quaternion::{Quaternion, ToQuaternion};
use ray::Ray;
use vector::{Vector, Vector2, Vector3};
2013-09-05 03:55:01 +00:00
2014-05-25 11:10:44 +00:00
/// A trait for a generic rotation. A rotation is a transformation that
/// creates a circular motion, and preserves at least one point in the space.
pub trait Rotation<S: BaseNum, V: Vector<S>, P: Point<S, V>>: PartialEq + ApproxEq<S> {
2014-05-25 11:10:44 +00:00
/// Create the identity transform (causes no transformation).
fn identity() -> Self;
/// Create a rotation to a given direction with an 'up' vector
fn look_at(dir: &V, up: &V) -> Self;
2014-05-25 11:10:44 +00:00
/// Create a shortest rotation to transform vector 'a' into 'b'.
/// Both given vectors are assumed to have unit length.
fn between_vectors(a: &V, b: &V) -> Self;
2014-05-25 11:10:44 +00:00
/// Rotate a vector using this rotation.
fn rotate_vector(&self, vec: &V) -> V;
2014-05-25 11:10:44 +00:00
/// Rotate a point using this rotation, by converting it to its
/// representation as a vector.
#[inline]
2013-11-09 01:15:51 +00:00
fn rotate_point(&self, point: &P) -> P {
Point::from_vec( &self.rotate_vector( &point.to_vec() ) )
}
2014-05-25 11:10:44 +00:00
/// Rotate a ray using this rotation.
#[inline]
fn rotate_ray(&self, ray: &Ray<P, V>) -> Ray<P,V> {
Ray::new(ray.origin.clone(), self.rotate_vector(&ray.direction))
}
2014-05-25 11:10:44 +00:00
/// Create a new rotation which combines both this rotation, and another.
fn concat(&self, other: &Self) -> Self;
2014-05-25 11:10:44 +00:00
/// Create a new rotation which "un-does" this rotation. That is,
/// `r.concat(r.invert())` is the identity.
fn invert(&self) -> Self;
2014-05-25 11:10:44 +00:00
/// Modify this rotation in-place by combining it with another.
#[inline]
fn concat_self(&mut self, other: &Self) {
*self = self.concat(other);
}
2014-05-25 11:10:44 +00:00
/// Invert this rotation in-place.
#[inline]
2013-11-09 01:15:51 +00:00
fn invert_self(&mut self) {
*self = self.invert();
}
2013-09-05 03:55:01 +00:00
}
2014-05-25 11:10:44 +00:00
/// A two-dimensional rotation.
pub trait Rotation2<S>: Rotation<S, Vector2<S>, Point2<S>>
+ ToMatrix2<S>
+ ToBasis2<S> {
2014-05-25 11:10:44 +00:00
/// Create a rotation by a given angle. Thus is a redundant case of both
/// from_axis_angle() and from_euler() for 2D space.
fn from_angle(theta: Rad<S>) -> Self;
}
2014-05-25 11:10:44 +00:00
/// A three-dimensional rotation.
pub trait Rotation3<S: BaseNum>: Rotation<S, Vector3<S>, Point3<S>>
+ ToMatrix3<S>
+ ToBasis3<S>
+ ToQuaternion<S>{
2014-05-25 11:10:44 +00:00
/// Create a rotation using an angle around a given axis.
fn from_axis_angle(axis: &Vector3<S>, angle: Rad<S>) -> Self;
/// Create a rotation from a set of euler angles.
///
/// # Parameters
///
/// - `x`: the angular rotation around the `x` axis (pitch).
/// - `y`: the angular rotation around the `y` axis (yaw).
/// - `z`: the angular rotation around the `z` axis (roll).
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Self;
2014-05-25 11:10:44 +00:00
/// Create a rotation from an angle around the `x` axis (pitch).
#[inline]
fn from_angle_x(theta: Rad<S>) -> Self {
Rotation3::from_axis_angle( &Vector3::unit_x(), theta )
}
2014-05-25 11:10:44 +00:00
/// Create a rotation from an angle around the `y` axis (yaw).
#[inline]
fn from_angle_y(theta: Rad<S>) -> Self {
Rotation3::from_axis_angle( &Vector3::unit_y(), theta )
}
2014-05-25 11:10:44 +00:00
/// Create a rotation from an angle around the `z` axis (roll).
#[inline]
fn from_angle_z(theta: Rad<S>) -> Self {
Rotation3::from_axis_angle( &Vector3::unit_z(), theta )
}
}
2013-09-05 03:55:01 +00:00
/// A two-dimensional rotation matrix.
///
/// The matrix is guaranteed to be orthogonal, so some operations can be
/// implemented more efficiently than the implementations for `math::Matrix2`. To
2013-09-05 03:55:01 +00:00
/// enforce orthogonality at the type level the operations have been restricted
/// to a subset of those implemented on `Matrix2`.
///
/// ## Example
///
/// Suppose we want to rotate a vector that lies in the x-y plane by some
/// angle. We can accomplish this quite easily with a two-dimensional rotation
/// matrix:
///
/// ```rust
/// use cgmath::angle::rad;
/// use cgmath::vector::Vector2;
/// use cgmath::matrix::{Matrix, ToMatrix2};
/// use cgmath::rotation::{Rotation, Rotation2, Basis2};
/// use cgmath::approx::ApproxEq;
///
/// // For simplicity, we will rotate the unit x vector to the unit y vector --
/// // so the angle is 90 degrees, or π/2.
/// let unit_x: Vector2<f64> = Vector2::unit_x();
/// let rot: Basis2<f64> = Rotation2::from_angle(rad(0.5f64 * Float::pi()));
///
/// // Rotate the vector using the two-dimensional rotation matrix:
/// let unit_y = rot.rotate_vector(&unit_x);
///
/// // Since sin(π/2) may not be exactly zero due to rounding errors, we can
/// // use cgmath's approx_eq() feature to show that it is close enough.
/// assert!(unit_y.approx_eq(&-Vector2::unit_y()));
///
/// // This is exactly equivalent to using the raw matrix itself:
/// let unit_y2 = rot.to_matrix2().mul_v(&unit_x);
/// assert_eq!(unit_y2, unit_y);
///
/// // Note that we can also concatenate rotations:
/// let rot_half: Basis2<f64> = Rotation2::from_angle(rad(0.25f64 * Float::pi()));
/// let unit_y3 = rot_half.concat(&rot_half).rotate_vector(&unit_x);
/// assert!(unit_y3.approx_eq(&unit_y2));
/// ```
#[deriving(PartialEq, Clone)]
2013-10-13 00:00:07 +00:00
pub struct Basis2<S> {
mat: Matrix2<S>
2013-09-05 03:55:01 +00:00
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Basis2<S> {
2014-05-25 11:10:44 +00:00
/// Coerce to a `Matrix2`
#[inline]
pub fn as_matrix2<'a>(&'a self) -> &'a Matrix2<S> { &self.mat }
}
2014-05-25 11:10:44 +00:00
/// Represents types which can be converted to a rotation matrix.
2014-05-26 17:10:04 +00:00
pub trait ToBasis2<S: BaseFloat> {
2014-05-25 11:10:44 +00:00
/// Convert this type to a rotation matrix.
2013-10-13 00:00:07 +00:00
fn to_rot2(&self) -> Basis2<S>;
2013-09-05 03:55:01 +00:00
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToBasis2<S> for Basis2<S> {
#[inline]
2013-10-13 00:00:07 +00:00
fn to_rot2(&self) -> Basis2<S> { self.clone() }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToMatrix2<S> for Basis2<S> {
#[inline]
fn to_matrix2(&self) -> Matrix2<S> { self.mat.clone() }
}
impl<S: BaseFloat> Rotation<S, Vector2<S>, Point2<S>> for Basis2<S> {
#[inline]
fn identity() -> Basis2<S> { Basis2{ mat: Matrix2::identity() } }
#[inline]
fn look_at(dir: &Vector2<S>, up: &Vector2<S>) -> Basis2<S> {
Basis2 { mat: Matrix2::look_at(dir, up) }
}
#[inline]
fn between_vectors(a: &Vector2<S>, b: &Vector2<S>) -> Basis2<S> {
Rotation2::from_angle( acos(a.dot(b)) )
}
2014-05-25 11:10:44 +00:00
#[inline]
fn rotate_vector(&self, vec: &Vector2<S>) -> Vector2<S> { self.mat.mul_v(vec) }
#[inline]
2013-10-13 00:00:07 +00:00
fn concat(&self, other: &Basis2<S>) -> Basis2<S> { Basis2 { mat: self.mat.mul_m(&other.mat) } }
#[inline]
2013-10-13 00:00:07 +00:00
fn concat_self(&mut self, other: &Basis2<S>) { self.mat.mul_self_m(&other.mat); }
// TODO: we know the matrix is orthogonal, so this could be re-written
// to be faster
#[inline]
2013-10-13 00:00:07 +00:00
fn invert(&self) -> Basis2<S> { Basis2 { mat: self.mat.invert().unwrap() } }
// TODO: we know the matrix is orthogonal, so this could be re-written
// to be faster
#[inline]
fn invert_self(&mut self) { self.mat.invert_self(); }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ApproxEq<S> for Basis2<S> {
#[inline]
2014-01-09 00:26:50 +00:00
fn approx_eq_eps(&self, other: &Basis2<S>, epsilon: &S) -> bool {
self.mat.approx_eq_eps(&other.mat, epsilon)
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Rotation2<S> for Basis2<S> {
fn from_angle(theta: Rad<S>) -> Basis2<S> { Basis2 { mat: Matrix2::from_angle(theta) } }
}
2013-09-05 03:55:01 +00:00
/// A three-dimensional rotation matrix.
///
/// The matrix is guaranteed to be orthogonal, so some operations, specifically
/// inversion, can be implemented more efficiently than the implementations for
/// `math::Matrix3`. To ensure orthogonality is maintained, the operations have
/// been restricted to a subeset of those implemented on `Matrix3`.
#[deriving(PartialEq, Clone)]
2013-10-13 00:00:07 +00:00
pub struct Basis3<S> {
mat: Matrix3<S>
2013-09-05 03:55:01 +00:00
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Basis3<S> {
2014-05-25 11:10:44 +00:00
/// Create a new rotation matrix from a quaternion.
#[inline]
pub fn from_quaternion(quaternion: &Quaternion<S>) -> Basis3<S> {
Basis3 { mat: quaternion.to_matrix3() }
}
2014-05-25 11:10:44 +00:00
/// Coerce to a `Matrix3`
#[inline]
pub fn as_matrix3<'a>(&'a self) -> &'a Matrix3<S> { &self.mat }
}
2014-05-25 11:10:44 +00:00
/// Represents types which can be converted to a rotation matrix.
2014-05-26 17:10:04 +00:00
pub trait ToBasis3<S: BaseFloat> {
2014-05-25 11:10:44 +00:00
/// Convert this type to a rotation matrix.
2013-10-13 00:00:07 +00:00
fn to_rot3(&self) -> Basis3<S>;
2013-09-05 03:55:01 +00:00
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToBasis3<S> for Basis3<S> {
#[inline]
2013-10-13 00:00:07 +00:00
fn to_rot3(&self) -> Basis3<S> { self.clone() }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToMatrix3<S> for Basis3<S> {
#[inline]
fn to_matrix3(&self) -> Matrix3<S> { self.mat.clone() }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToQuaternion<S> for Basis3<S> {
#[inline]
fn to_quaternion(&self) -> Quaternion<S> { self.mat.to_quaternion() }
}
impl<S: BaseFloat> Rotation<S, Vector3<S>, Point3<S>> for Basis3<S> {
#[inline]
fn identity() -> Basis3<S> { Basis3{ mat: Matrix3::identity() } }
#[inline]
fn look_at(dir: &Vector3<S>, up: &Vector3<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::look_at(dir, up) }
}
#[inline]
fn between_vectors(a: &Vector3<S>, b: &Vector3<S>) -> Basis3<S> {
let q: Quaternion<S> = Rotation::between_vectors(a, b);
q.to_rot3()
}
2014-05-25 11:10:44 +00:00
#[inline]
fn rotate_vector(&self, vec: &Vector3<S>) -> Vector3<S> { self.mat.mul_v(vec) }
#[inline]
2013-10-13 00:00:07 +00:00
fn concat(&self, other: &Basis3<S>) -> Basis3<S> { Basis3 { mat: self.mat.mul_m(&other.mat) } }
#[inline]
2013-10-13 00:00:07 +00:00
fn concat_self(&mut self, other: &Basis3<S>) { self.mat.mul_self_m(&other.mat); }
// TODO: we know the matrix is orthogonal, so this could be re-written
// to be faster
#[inline]
2013-10-13 00:00:07 +00:00
fn invert(&self) -> Basis3<S> { Basis3 { mat: self.mat.invert().unwrap() } }
// TODO: we know the matrix is orthogonal, so this could be re-written
// to be faster
#[inline]
fn invert_self(&mut self) { self.mat.invert_self(); }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ApproxEq<S> for Basis3<S> {
#[inline]
2014-01-09 00:26:50 +00:00
fn approx_eq_eps(&self, other: &Basis3<S>, epsilon: &S) -> bool {
self.mat.approx_eq_eps(&other.mat, epsilon)
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Rotation3<S> for Basis3<S> {
fn from_axis_angle(axis: &Vector3<S>, angle: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_axis_angle(axis, angle) }
}
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_euler(x, y ,z) }
}
fn from_angle_x(theta: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_angle_x(theta) }
}
fn from_angle_y(theta: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_angle_y(theta) }
}
fn from_angle_z(theta: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_angle_z(theta) }
}
}