cgmath/src/mat4.rs

556 lines
19 KiB
Rust
Raw Normal View History

2012-12-13 13:01:42 +00:00
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
2013-01-25 21:41:23 +00:00
use core::util::swap;
use core::sys::size_of;
2012-12-13 13:01:42 +00:00
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
2013-01-27 22:22:15 +00:00
use numeric::*;
use numeric::number::Number::{zero,one};
2012-12-13 13:01:42 +00:00
use vec::{
Vec4,
Vector4,
vec4,
dvec4,
};
2012-12-13 13:01:42 +00:00
2013-01-25 21:41:23 +00:00
use mat::{
Mat3,
Matrix,
Matrix3,
2013-01-25 21:41:23 +00:00
Matrix4,
MutableMatrix,
2013-01-25 21:41:23 +00:00
};
2012-12-13 13:01:42 +00:00
/**
* A 4 x 4 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
* * `w` - the fourth column vector of the matrix
*/
2012-12-20 05:18:23 +00:00
#[deriving_eq]
2012-12-13 13:01:42 +00:00
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
pub impl<T:Copy Float> Mat4<T>: Matrix<T, Vec4<T>> {
2012-12-13 13:01:42 +00:00
#[inline(always)]
pure fn col(&self, i: uint) -> Vec4<T> { self[i] }
2012-12-13 13:01:42 +00:00
#[inline(always)]
pure fn row(&self, i: uint) -> Vec4<T> {
Vector4::new(self[0][i],
self[1][i],
self[2][i],
self[3][i])
2012-12-13 13:01:42 +00:00
}
/**
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2 c3
* +-----+-----+-----+-----+
* r0 | val | 0 | 0 | 0 |
* +-----+-----+-----+-----+
* r1 | 0 | val | 0 | 0 |
* +-----+-----+-----+-----+
* r2 | 0 | 0 | val | 0 |
* +-----+-----+-----+-----+
* r3 | 0 | 0 | 0 | val |
* +-----+-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat4<T> {
Matrix4::new(value, zero(), zero(), zero(),
zero(), value, zero(), zero(),
zero(), zero(), value, zero(),
zero(), zero(), zero(), value)
2012-12-13 13:01:42 +00:00
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 1 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 1 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn identity() -> Mat4<T> {
Matrix4::new( one::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), one::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), one::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), one::<T>())
2012-12-13 13:01:42 +00:00
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn zero() -> Mat4<T> {
Matrix4::new(zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>())
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat4<T> {
Matrix4::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value),
self[3].mul_t(value))
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vector4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Matrix4::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]),
self[3].add_v(&other[3]))
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Matrix4::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]),
self[3].sub_v(&other[3]))
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
Matrix4::new(self.row(0).dot(&other.col(0)),
self.row(1).dot(&other.col(0)),
self.row(2).dot(&other.col(0)),
self.row(3).dot(&other.col(0)),
2012-12-15 22:30:44 +00:00
self.row(0).dot(&other.col(1)),
self.row(1).dot(&other.col(1)),
self.row(2).dot(&other.col(1)),
self.row(3).dot(&other.col(1)),
2012-12-15 22:30:44 +00:00
self.row(0).dot(&other.col(2)),
self.row(1).dot(&other.col(2)),
self.row(2).dot(&other.col(2)),
self.row(3).dot(&other.col(2)),
2012-12-15 22:30:44 +00:00
self.row(0).dot(&other.col(3)),
self.row(1).dot(&other.col(3)),
self.row(2).dot(&other.col(3)),
self.row(3).dot(&other.col(3)))
2012-12-15 22:30:44 +00:00
2012-12-13 13:01:42 +00:00
}
pure fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
pure fn determinant(&self) -> T {
let m0: Mat3<T> = Matrix3::new(self[1][1], self[2][1], self[3][1],
self[1][2], self[2][2], self[3][2],
self[1][3], self[2][3], self[3][3]);
let m1: Mat3<T> = Matrix3::new(self[0][1], self[2][1], self[3][1],
self[0][2], self[2][2], self[3][2],
self[0][3], self[2][3], self[3][3]);
let m2: Mat3<T> = Matrix3::new(self[0][1], self[1][1], self[3][1],
self[0][2], self[1][2], self[3][2],
self[0][3], self[1][3], self[3][3]);
let m3: Mat3<T> = Matrix3::new(self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2],
self[0][3], self[1][3], self[2][3]);
self[0][0] * m0.determinant() -
self[1][0] * m1.determinant() +
self[2][0] * m2.determinant() -
self[3][0] * m3.determinant()
2012-12-13 13:01:42 +00:00
}
pure fn trace(&self) -> T {
self[0][0] + self[1][1] + self[2][2] + self[3][3]
}
pure fn inverse(&self) -> Option<Mat4<T>> {
let d = self.determinant();
if d.fuzzy_eq(&zero()) {
2012-12-13 13:01:42 +00:00
None
} else {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = *self;
let mut I: Mat4<T> = Matrix::identity();
2012-12-13 13:01:42 +00:00
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
2013-01-27 22:22:15 +00:00
if abs(A[j][i]) > abs(A[j][i1]) {
2012-12-13 13:01:42 +00:00
i1 = i;
}
}
unsafe {
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
// Scale col j to have a unit diagonal
I.col_mut(j).div_self_t(&A[j][j]);
A.col_mut(j).div_self_t(&A[j][j]);
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
I.col_mut(i).sub_self_v(&I[j].mul_t(A[i][j]));
A.col_mut(i).sub_self_v(&A[j].mul_t(A[i][j]));
}
}
}
}
Some(I)
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat4<T> {
Matrix4::new(self[0][0], self[1][0], self[2][0], self[3][0],
self[0][1], self[1][1], self[2][1], self[3][1],
self[0][2], self[1][2], self[2][2], self[3][2],
self[0][3], self[1][3], self[2][3], self[3][3])
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
self.fuzzy_eq(&Matrix::identity())
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
self[0][1].fuzzy_eq(&zero()) &&
self[0][2].fuzzy_eq(&zero()) &&
self[0][3].fuzzy_eq(&zero()) &&
2012-12-13 13:01:42 +00:00
self[1][0].fuzzy_eq(&zero()) &&
self[1][2].fuzzy_eq(&zero()) &&
self[1][3].fuzzy_eq(&zero()) &&
2012-12-13 13:01:42 +00:00
self[2][0].fuzzy_eq(&zero()) &&
self[2][1].fuzzy_eq(&zero()) &&
self[2][3].fuzzy_eq(&zero()) &&
2012-12-13 13:01:42 +00:00
self[3][0].fuzzy_eq(&zero()) &&
self[3][1].fuzzy_eq(&zero()) &&
self[3][2].fuzzy_eq(&zero())
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
!self.fuzzy_eq(&Matrix::identity())
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[0][3].fuzzy_eq(&self[3][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[1][3].fuzzy_eq(&self[3][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2]) &&
self[2][3].fuzzy_eq(&self[3][2]) &&
self[3][0].fuzzy_eq(&self[0][3]) &&
self[3][1].fuzzy_eq(&self[1][3]) &&
self[3][2].fuzzy_eq(&self[2][3])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&zero())
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat4<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float> Mat4<T>: Matrix4<T, Vec4<T>> {
/**
* Construct a 4 x 4 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix
* * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0r0 | c1r0 | c2r0 | c3r0 |
* +------+------+------+------+
* r1 | c0r1 | c1r1 | c2r1 | c3r1 |
* +------+------+------+------+
* r2 | c0r2 | c1r2 | c2r2 | c3r2 |
* +------+------+------+------+
* r3 | c0r3 | c1r3 | c2r3 | c3r3 |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
Matrix4::from_cols(Vector4::new::<T,Vec4<T>>(c0r0, c0r1, c0r2, c0r3),
Vector4::new::<T,Vec4<T>>(c1r0, c1r1, c1r2, c1r3),
Vector4::new::<T,Vec4<T>>(c2r0, c2r1, c2r2, c2r3),
Vector4::new::<T,Vec4<T>>(c3r0, c3r1, c3r2, c3r3))
}
/**
* Construct a 4 x 4 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
* * `c3` - the fourth column vector of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0.x | c1.x | c2.x | c3.x |
* +------+------+------+------+
* r1 | c0.y | c1.y | c2.y | c3.y |
* +------+------+------+------+
* r2 | c0.z | c1.z | c2.z | c3.z |
* +------+------+------+------+
* r3 | c0.w | c1.w | c2.w | c3.w |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec4<T>,
c1: Vec4<T>,
c2: Vec4<T>,
c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: c0, y: c1, z: c2, w: c3 }
}
}
pub impl<T:Copy Float> Mat4<T>: MutableMatrix<T, Vec4<T>> {
2012-12-13 13:01:42 +00:00
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec4<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
2013-02-06 21:26:33 +00:00
_ => fail!(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
2012-12-13 13:01:42 +00:00
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
2013-01-25 21:41:23 +00:00
swap(self.col_mut(a),
self.col_mut(b));
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
self.w.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat4<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
(*self) = Matrix::identity();
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
fn to_zero(&mut self) {
(*self) = Matrix::zero();
2012-12-13 13:01:42 +00:00
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
self.col_mut(2).mul_self_t(&value);
self.col_mut(3).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
self.col_mut(3).add_self_v(&other[3]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
self.col_mut(3).sub_self_v(&other[3]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
2013-02-06 21:26:33 +00:00
None => fail!(~"Couldn't invert the matrix!")
2012-12-13 13:01:42 +00:00
}
}
#[inline(always)]
fn transpose_self(&mut self) {
2013-01-25 21:41:23 +00:00
swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
swap(self.col_mut(0).index_mut(3), self.col_mut(3).index_mut(0));
2012-12-13 13:01:42 +00:00
2013-01-25 21:41:23 +00:00
swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
swap(self.col_mut(1).index_mut(3), self.col_mut(3).index_mut(1));
2012-12-13 13:01:42 +00:00
2013-01-25 21:41:23 +00:00
swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
swap(self.col_mut(2).index_mut(3), self.col_mut(3).index_mut(2));
2012-12-13 13:01:42 +00:00
2013-01-25 21:41:23 +00:00
swap(self.col_mut(3).index_mut(0), self.col_mut(0).index_mut(3));
swap(self.col_mut(3).index_mut(1), self.col_mut(1).index_mut(3));
swap(self.col_mut(3).index_mut(2), self.col_mut(2).index_mut(3));
2012-12-13 13:01:42 +00:00
}
}
pub impl<T:Copy Float> Mat4<T>: Neg<Mat4<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat4<T> {
Matrix4::from_cols(-self[0], -self[1], -self[2], -self[3])
2012-12-13 13:01:42 +00:00
}
}
pub impl<T:Copy> Mat4<T>: Index<uint, Vec4<T>> {
#[inline(always)]
pure fn index(&self, i: uint) -> Vec4<T> {
unsafe { do buf_as_slice(
transmute::<*Mat4<T>, *Vec4<T>>(
to_unsafe_ptr(self)), 4) |slice| { slice[i] }
}
}
}
pub impl<T:Copy Float> Mat4<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat4<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}
// GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification]
// (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf).
pub type mat4 = Mat4<f32>; // a 4×4 single-precision floating-point matrix
pub type dmat4 = Mat4<f64>; // a 4×4 double-precision floating-point matrix
// Static method wrappers for GLSL-style types
pub impl mat4 {
#[inline(always)] static pure fn new(c0r0: f32, c0r1: f32, c0r2: f32, c0r3: f32, c1r0: f32, c1r1: f32, c1r2: f32, c1r3: f32, c2r0: f32, c2r1: f32, c2r2: f32, c2r3: f32, c3r0: f32, c3r1: f32, c3r2: f32, c3r3: f32)
-> mat4 { Matrix4::new(c0r0, c0r1, c0r2, c0r3, c1r0, c1r1, c1r2, c1r3, c2r0, c2r1, c2r2, c2r3, c3r0, c3r1, c3r2, c3r3) }
#[inline(always)] static pure fn from_cols(c0: vec4, c1: vec4, c2: vec4, c3: vec4)
-> mat4 { Matrix4::from_cols(move c0, move c1, move c2, move c3) }
#[inline(always)] static pure fn from_value(v: f32) -> mat4 { Matrix::from_value(v) }
#[inline(always)] static pure fn identity() -> mat4 { Matrix::identity() }
#[inline(always)] static pure fn zero() -> mat4 { Matrix::zero() }
#[inline(always)] static pure fn dim() -> uint { 4 }
#[inline(always)] static pure fn rows() -> uint { 4 }
#[inline(always)] static pure fn cols() -> uint { 4 }
#[inline(always)] static pure fn size_of() -> uint { size_of::<mat4>() }
}
pub impl dmat4 {
#[inline(always)] static pure fn new(c0r0: f64, c0r1: f64, c0r2: f64, c0r3: f64, c1r0: f64, c1r1: f64, c1r2: f64, c1r3: f64, c2r0: f64, c2r1: f64, c2r2: f64, c2r3: f64, c3r0: f64, c3r1: f64, c3r2: f64, c3r3: f64)
-> dmat4 { Matrix4::new(c0r0, c0r1, c0r2, c0r3, c1r0, c1r1, c1r2, c1r3, c2r0, c2r1, c2r2, c2r3, c3r0, c3r1, c3r2, c3r3) }
#[inline(always)] static pure fn from_cols(c0: dvec4, c1: dvec4, c2: dvec4, c3: dvec4)
-> dmat4 { Matrix4::from_cols(move c0, move c1, move c2, move c3) }
#[inline(always)] static pure fn from_value(v: f64) -> dmat4 { Matrix::from_value(v) }
#[inline(always)] static pure fn identity() -> dmat4 { Matrix::identity() }
#[inline(always)] static pure fn zero() -> dmat4 { Matrix::zero() }
#[inline(always)] static pure fn dim() -> uint { 4 }
#[inline(always)] static pure fn rows() -> uint { 4 }
#[inline(always)] static pure fn cols() -> uint { 4 }
#[inline(always)] static pure fn size_of() -> uint { size_of::<dmat4>() }
2012-12-13 13:01:42 +00:00
}