cgmath/src-old/math/mat.rs

1678 lines
51 KiB
Rust
Raw Normal View History

// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Matrix types
2013-07-14 03:22:45 +00:00
use math::{Dimensioned, SwapComponents};
use math::{Quat, ToQuat};
use math::{Vec2, Vec3, Vec4};
2013-06-10 23:02:25 +00:00
2013-07-14 03:22:45 +00:00
pub trait Mat<T,Vec,Slice>: Dimensioned<Vec,Slice>
+ SwapComponents {
pub fn c<'a>(&'a self, c: uint) -> &'a Vec;
pub fn r(&self, r: uint) -> Vec;
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T;
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec;
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T;
pub fn swap_c(&mut self, a: uint, b: uint);
pub fn swap_r(&mut self, a: uint, b: uint);
pub fn swap_cr(&mut self, a: (uint, uint), b: (uint, uint));
2013-07-13 21:49:23 +00:00
pub fn transpose(&self) -> Self;
pub fn transpose_self(&mut self);
2013-07-04 00:40:58 +00:00
}
2013-07-13 21:49:23 +00:00
pub trait NumMat<T,Vec,Slice>: Mat<T,Vec,Slice> + Neg<Self> {
pub fn mul_s(&self, value: T) -> Self;
2013-07-13 21:49:23 +00:00
pub fn mul_v(&self, vec: &Vec) -> Vec;
pub fn add_m(&self, other: &Self) -> Self;
pub fn sub_m(&self, other: &Self) -> Self;
pub fn mul_m(&self, other: &Self) -> Self;
pub fn mul_self_s(&mut self, value: T);
2013-07-13 21:49:23 +00:00
pub fn add_self_m(&mut self, other: &Self);
pub fn sub_self_m(&mut self, other: &Self);
pub fn dot(&self, other: &Self) -> T;
pub fn determinant(&self) -> T;
pub fn trace(&self) -> T;
pub fn to_identity(&mut self);
pub fn to_zero(&mut self);
2013-07-04 00:40:58 +00:00
}
2013-07-13 21:49:23 +00:00
pub trait FloatMat<T,Vec,Slice>: NumMat<T,Vec,Slice> {
pub fn inverse(&self) -> Option<Self>;
pub fn invert_self(&mut self);
pub fn is_identity(&self) -> bool;
pub fn is_diagonal(&self) -> bool;
pub fn is_rotated(&self) -> bool;
pub fn is_symmetric(&self) -> bool;
pub fn is_invertible(&self) -> bool;
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
#[deriving(Clone, Eq)]
2013-06-16 08:03:14 +00:00
pub struct Mat2<T> {
x: Vec2<T>,
y: Vec2<T>,
}
2013-06-12 00:02:39 +00:00
2013-06-16 08:03:14 +00:00
// GLSL-style type aliases
2013-06-10 23:02:25 +00:00
pub type mat2 = Mat2<f32>;
pub type dmat2 = Mat2<f64>;
// Rust-style type aliases
pub type Mat2f = Mat2<float>;
pub type Mat2f32 = Mat2<f32>;
pub type Mat2f64 = Mat2<f64>;
2013-07-14 03:22:45 +00:00
impl_dimensioned!(Mat2, Vec2<T>, 2)
impl_swap_components!(Mat2)
2013-07-12 01:22:14 +00:00
impl_approx!(Mat3 { x, y, z })
2013-06-16 08:03:14 +00:00
pub trait ToMat2<T> {
pub fn to_mat2(&self) -> Mat2<T>;
}
impl<T> Mat2<T> {
#[inline]
pub fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Mat2::from_cols(Vec2::new(c0r0, c0r1),
Vec2::new(c1r0, c1r1))
}
#[inline]
pub fn from_cols(c0: Vec2<T>,
c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: c0, y: c1 }
}
}
2013-07-13 21:49:23 +00:00
impl<T:Clone> Mat<T,Vec2<T>,[Vec2<T>,..2]> for Mat2<T> {
#[inline]
pub fn c<'a>(&'a self, c: uint) -> &'a Vec2<T> {
self.i(c)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn r(&self, r: uint) -> Vec2<T> {
Vec2::new(self.i(0).i(r).clone(),
self.i(1).i(r).clone())
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T {
self.i(c).i(r)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec2<T> {
self.mut_i(c)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T {
self.mut_i(c).mut_i(r)
2013-07-13 21:49:23 +00:00
}
2013-07-07 06:00:35 +00:00
#[inline]
pub fn swap_c(&mut self, a: uint, b: uint) {
let tmp = self.c(a).clone();
*self.mut_c(a) = self.c(b).clone();
*self.mut_c(b) = tmp;
2013-07-07 06:00:35 +00:00
}
#[inline]
pub fn swap_r(&mut self, a: uint, b: uint) {
self.mut_c(0).swap(a, b);
self.mut_c(1).swap(a, b);
2013-07-07 06:00:35 +00:00
}
2013-07-13 21:49:23 +00:00
#[inline]
pub fn swap_cr(&mut self, (col_a, row_a): (uint, uint),
2013-07-13 21:49:23 +00:00
(col_b, row_b): (uint, uint)) {
let tmp = self.cr(col_a, row_a).clone();
*self.mut_cr(col_a, row_a) = self.cr(col_b, row_b).clone();
*self.mut_cr(col_b, row_b) = tmp;
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn transpose(&self) -> Mat2<T> {
Mat2::new(self.cr(0, 0).clone(), self.cr(1, 0).clone(),
self.cr(0, 1).clone(), self.cr(1, 1).clone())
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn transpose_self(&mut self) {
self.swap_cr((0, 1), (1, 0));
2013-07-13 21:49:23 +00:00
}
2013-07-07 06:00:35 +00:00
}
impl<T:Clone + Num> ToMat3<T> for Mat2<T> {
2013-06-16 08:03:14 +00:00
#[inline]
pub fn to_mat3(&self) -> Mat3<T> {
Mat3::new(self.cr(0, 0).clone(), self.cr(0, 1).clone(), zero!(T),
self.cr(1, 0).clone(), self.cr(1, 1).clone(), zero!(T),
2013-06-16 08:03:14 +00:00
zero!(T), zero!(T), one!(T))
}
}
impl<T:Clone + Num> ToMat4<T> for Mat2<T> {
2013-06-16 08:03:14 +00:00
#[inline]
pub fn to_mat4(&self) -> Mat4<T> {
Mat4::new(self.cr(0, 0).clone(), self.cr(0, 1).clone(), zero!(T), zero!(T),
self.cr(1, 0).clone(), self.cr(1, 1).clone(), zero!(T), zero!(T),
2013-06-16 08:03:14 +00:00
zero!(T), zero!(T), one!(T), zero!(T),
zero!(T), zero!(T), zero!(T), one!(T))
}
}
2013-07-15 21:14:10 +00:00
impl<T:Num> Mat2<T> {
2013-07-04 00:40:58 +00:00
#[inline]
2013-07-15 21:14:10 +00:00
pub fn identity() -> Mat2<T> {
Mat2::from_cols(Vec2::unit_x(),
Vec2::unit_y())
2013-07-04 00:40:58 +00:00
}
#[inline]
2013-07-15 21:14:10 +00:00
pub fn zero() -> Mat2<T> {
Mat2::from_cols(Vec2::zero(),
Vec2::zero())
}
}
2013-07-04 00:40:58 +00:00
2013-07-15 21:14:10 +00:00
impl<T:Clone + Num> Mat2<T> {
2013-07-04 00:40:58 +00:00
#[inline]
2013-07-15 21:14:10 +00:00
pub fn from_value(value: T) -> Mat2<T> {
Mat2::new(value.clone(), zero!(T),
zero!(T), value.clone())
}
2013-07-13 21:49:23 +00:00
}
2013-07-04 00:40:58 +00:00
2013-07-13 21:49:23 +00:00
impl<T:Clone + Num> NumMat<T,Vec2<T>,[Vec2<T>,..2]> for Mat2<T> {
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_s(&self, value: T) -> Mat2<T> {
Mat2::from_cols(self.c(0).mul_s(value.clone()),
self.c(1).mul_s(value.clone()))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vec2::new(self.r(0).dot(vec),
self.r(1).dot(vec))
2013-07-04 00:40:58 +00:00
}
#[inline]
2013-07-07 06:00:35 +00:00
pub fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self.c(0).add_v(other.c(0)),
self.c(1).add_v(other.c(1)))
2013-07-04 00:40:58 +00:00
}
#[inline]
2013-07-07 06:00:35 +00:00
pub fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self.c(0).sub_v(other.c(0)),
self.c(1).sub_v(other.c(1)))
2013-07-04 00:40:58 +00:00
}
#[inline]
2013-07-07 06:00:35 +00:00
pub fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::new(self.r(0).dot(other.c(0)), self.r(1).dot(other.c(0)),
self.r(0).dot(other.c(1)), self.r(1).dot(other.c(1)))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn mul_self_s(&mut self, value: T) {
self.mut_c(0).mul_self_s(value.clone());
self.mut_c(1).mul_self_s(value.clone());
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn add_self_m(&mut self, other: &Mat2<T>) {
self.mut_c(0).add_self_v(other.c(0));
self.mut_c(1).add_self_v(other.c(1));
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn sub_self_m(&mut self, other: &Mat2<T>) {
self.mut_c(0).sub_self_v(other.c(0));
self.mut_c(1).sub_self_v(other.c(1));
2013-07-04 00:40:58 +00:00
}
pub fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
*self.cr(0, 0) * *self.cr(1, 1) - *self.cr(1, 0) * *self.cr(0, 1)
2013-07-04 00:40:58 +00:00
}
pub fn trace(&self) -> T {
*self.cr(0, 0) + *self.cr(1, 1)
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn to_identity(&mut self) {
*self = Mat2::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = Mat2::zero();
}
}
impl<T:Clone + Num> Neg<Mat2<T>> for Mat2<T> {
#[inline]
pub fn neg(&self) -> Mat2<T> {
Mat2::from_cols(-*self.c(0),
-*self.c(1))
2013-07-04 00:40:58 +00:00
}
}
impl<T:Clone + Float> Mat2<T> {
2013-06-16 08:03:14 +00:00
#[inline]
pub fn from_angle(radians: T) -> Mat2<T> {
let cos_theta = radians.cos();
let sin_theta = radians.sin();
Mat2::new(cos_theta.clone(), -sin_theta.clone(),
sin_theta.clone(), cos_theta.clone())
2013-06-16 08:03:14 +00:00
}
}
impl<T:Clone + Float> FloatMat<T,Vec2<T>,[Vec2<T>,..2]> for Mat2<T> {
2013-07-04 00:40:58 +00:00
#[inline]
pub fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.approx_eq(&zero!(T)) {
None
} else {
Some(Mat2::new(self.cr(1, 1) / d, -self.cr(0, 1) / d,
-self.cr(1, 0) / d, self.cr(0, 0) / d))
2013-07-04 00:40:58 +00:00
}
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat2::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
self.cr(0, 1).approx_eq(&zero!(T)) &&
self.cr(1, 0).approx_eq(&zero!(T))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat2::identity())
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[inline]
pub fn is_symmetric(&self) -> bool {
self.cr(0, 1).approx_eq(self.cr(1, 0)) &&
self.cr(1, 0).approx_eq(self.cr(0, 1))
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&zero!(T))
}
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[cfg(test)]
mod mat2_tests{
use math::mat::*;
use math::vec::*;
2013-06-16 08:03:14 +00:00
static A: Mat2<float> = Mat2 { x: Vec2 { x: 1.0, y: 3.0 },
2013-07-04 00:40:58 +00:00
y: Vec2 { x: 2.0, y: 4.0 } };
static B: Mat2<float> = Mat2 { x: Vec2 { x: 2.0, y: 4.0 },
2013-07-04 00:40:58 +00:00
y: Vec2 { x: 3.0, y: 5.0 } };
static C: Mat2<float> = Mat2 { x: Vec2 { x: 2.0, y: 1.0 },
y: Vec2 { x: 1.0, y: 2.0 } };
2013-06-16 08:03:14 +00:00
static V: Vec2<float> = Vec2 { x: 1.0, y: 2.0 };
static F: float = 0.5;
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_swap_c() {
let mut mut_a = A;
mut_a.swap_c(0, 1);
assert_eq!(mut_a.c(0), A.c(1));
assert_eq!(mut_a.c(1), A.c(0));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_swap_r() {
let mut mut_a = A;
mut_a.swap_r(0, 1);
assert_eq!(mut_a.r(0), A.r(1));
assert_eq!(mut_a.r(1), A.r(0));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_identity() {
2013-06-16 08:03:14 +00:00
assert_eq!(Mat2::identity::<float>(),
Mat2::new::<float>(1.0, 0.0,
0.0, 1.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.to_identity();
assert!(mut_a.is_identity());
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_zero() {
2013-06-16 08:03:14 +00:00
assert_eq!(Mat2::zero::<float>(),
Mat2::new::<float>(0.0, 0.0,
0.0, 0.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.to_zero();
assert_eq!(mut_a, Mat2::zero::<float>());
}
2013-07-04 00:40:58 +00:00
#[test]
fn test_determinant() {
assert_eq!(A.determinant(), -2.0);
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_trace() {
assert_eq!(A.trace(), 5.0);
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_neg() {
assert_eq!(A.neg(),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(-1.0, -3.0,
-2.0, -4.0));
assert_eq!(-A, A.neg());
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_s() {
assert_eq!(A.mul_s(F),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(0.5, 1.5,
1.0, 2.0));
let mut mut_a = A;
mut_a.mul_self_s(F);
assert_eq!(mut_a, A.mul_s(F));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_v() {
assert_eq!(A.mul_v(&V), Vec2::new::<float>(5.0, 11.0));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_add_m() {
assert_eq!(A.add_m(&B),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(3.0, 7.0,
5.0, 9.0));
let mut mut_a = A;
mut_a.add_self_m(&B);
assert_eq!(mut_a, A.add_m(&B));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_sub_m() {
assert_eq!(A.sub_m(&B),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(-1.0, -1.0,
-1.0, -1.0));
let mut mut_a = A;
mut_a.sub_self_m(&B);
assert_eq!(mut_a, A.sub_m(&B));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_m() {
assert_eq!(A.mul_m(&B),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(10.0, 22.0,
13.0, 29.0));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_dot() {
assert_eq!(A.dot(&B), 40.0);
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_transpose() {
assert_eq!(A.transpose(),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(1.0, 2.0,
3.0, 4.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.transpose_self();
assert_eq!(mut_a, A.transpose());
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_inverse() {
assert!(Mat2::identity::<float>().inverse().unwrap().is_identity());
2013-06-16 08:03:14 +00:00
assert_eq!(A.inverse().unwrap(),
2013-06-16 08:03:14 +00:00
Mat2::new::<float>(-2.0, 1.5,
1.0, -0.5));
assert!(Mat2::new::<float>(0.0, 2.0,
0.0, 5.0).inverse().is_none());
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.invert_self();
assert_eq!(mut_a, A.inverse().unwrap());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_predicates() {
assert!(Mat2::identity::<float>().is_identity());
assert!(Mat2::identity::<float>().is_symmetric());
assert!(Mat2::identity::<float>().is_diagonal());
assert!(!Mat2::identity::<float>().is_rotated());
assert!(Mat2::identity::<float>().is_invertible());
2013-06-16 08:03:14 +00:00
assert!(!A.is_identity());
assert!(!A.is_symmetric());
assert!(!A.is_diagonal());
assert!(A.is_rotated());
assert!(A.is_invertible());
2013-06-16 08:03:14 +00:00
assert!(!C.is_identity());
assert!(C.is_symmetric());
assert!(!C.is_diagonal());
assert!(C.is_rotated());
assert!(C.is_invertible());
2013-06-16 08:03:14 +00:00
assert!(Mat2::from_value::<float>(6.0).is_diagonal());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_to_mat3() {
assert_eq!(A.to_mat3(),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(1.0, 3.0, 0.0,
2.0, 4.0, 0.0,
0.0, 0.0, 1.0));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_to_mat4() {
assert_eq!(A.to_mat4(),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(1.0, 3.0, 0.0, 0.0,
2.0, 4.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0));
}
#[test]
2013-07-04 00:40:58 +00:00
fn test_approx() {
2013-06-16 08:03:14 +00:00
assert!(!Mat2::new::<float>(0.000001, 0.000001,
0.000001, 0.000001).approx_eq(&Mat2::zero::<float>()));
assert!(Mat2::new::<float>(0.0000001, 0.0000001,
0.0000001, 0.0000001).approx_eq(&Mat2::zero::<float>()));
}
}
#[deriving(Clone, Eq)]
2013-06-16 08:03:14 +00:00
pub struct Mat3<T> {
x: Vec3<T>,
y: Vec3<T>,
z: Vec3<T>,
}
// GLSL-style type aliases
pub type mat3 = Mat3<f32>;
pub type dmat3 = Mat3<f64>;
// Rust-style type aliases
2013-06-10 23:02:25 +00:00
pub type Mat3f = Mat3<float>;
pub type Mat3f32 = Mat3<f32>;
pub type Mat3f64 = Mat3<f64>;
2013-07-14 03:22:45 +00:00
impl_dimensioned!(Mat3, Vec3<T>, 3)
impl_swap_components!(Mat3)
2013-07-12 01:22:14 +00:00
impl_approx!(Mat2 { x, y })
2013-06-16 08:03:14 +00:00
pub trait ToMat3<T> {
pub fn to_mat3(&self) -> Mat3<T>;
}
impl<T> Mat3<T> {
#[inline]
pub fn new(c0r0:T, c0r1:T, c0r2:T,
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
Mat3::from_cols(Vec3::new(c0r0, c0r1, c0r2),
Vec3::new(c1r0, c1r1, c1r2),
Vec3::new(c2r0, c2r1, c2r2))
}
#[inline]
pub fn from_cols(c0: Vec3<T>,
c1: Vec3<T>,
c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: c0, y: c1, z: c2 }
}
2013-07-15 21:14:10 +00:00
#[inline]
pub fn from_axes(x: Vec3<T>,
y: Vec3<T>,
z: Vec3<T>) -> Mat3<T> {
Mat3 { x: x, y: y, z: z }
}
2013-06-16 08:03:14 +00:00
}
2013-07-13 21:49:23 +00:00
impl<T:Clone> Mat<T,Vec3<T>,[Vec3<T>,..3]> for Mat3<T> {
#[inline]
pub fn c<'a>(&'a self, c: uint) -> &'a Vec3<T> {
self.i(c)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn r(&self, r: uint) -> Vec3<T> {
Vec3::new(self.i(0).i(r).clone(),
self.i(1).i(r).clone(),
self.i(2).i(r).clone())
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T {
self.i(c).i(r)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec3<T> {
self.mut_i(c)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T {
self.mut_i(c).mut_i(r)
2013-07-13 21:49:23 +00:00
}
2013-07-07 06:00:35 +00:00
#[inline]
pub fn swap_c(&mut self, a: uint, b: uint) {
let tmp = self.c(a).clone();
*self.mut_c(a) = self.c(b).clone();
*self.mut_c(b) = tmp;
2013-07-07 06:00:35 +00:00
}
#[inline]
pub fn swap_r(&mut self, a: uint, b: uint) {
self.mut_c(0).swap(a, b);
self.mut_c(1).swap(a, b);
self.mut_c(2).swap(a, b);
2013-07-07 06:00:35 +00:00
}
2013-07-13 21:49:23 +00:00
#[inline]
pub fn swap_cr(&mut self, (col_a, row_a): (uint, uint),
2013-07-13 21:49:23 +00:00
(col_b, row_b): (uint, uint)) {
let tmp = self.cr(col_a, row_a).clone();
*self.mut_cr(col_a, row_a) = self.cr(col_b, row_b).clone();
*self.mut_cr(col_b, row_b) = tmp;
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn transpose(&self) -> Mat3<T> {
Mat3::new(self.cr(0, 0).clone(), self.cr(1, 0).clone(), self.cr(2, 0).clone(),
self.cr(0, 1).clone(), self.cr(1, 1).clone(), self.cr(2, 1).clone(),
self.cr(0, 2).clone(), self.cr(1, 2).clone(), self.cr(2, 2).clone())
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn transpose_self(&mut self) {
self.swap_cr((0, 1), (1, 0));
self.swap_cr((0, 2), (2, 0));
self.swap_cr((1, 2), (2, 1));
2013-07-13 21:49:23 +00:00
}
2013-07-07 06:00:35 +00:00
}
impl<T:Clone + Num> ToMat4<T> for Mat3<T> {
2013-06-16 08:03:14 +00:00
#[inline]
pub fn to_mat4(&self) -> Mat4<T> {
Mat4::new(self.cr(0, 0).clone(), self.cr(0, 1).clone(), self.cr(0, 2).clone(), zero!(T),
self.cr(1, 0).clone(), self.cr(1, 1).clone(), self.cr(1, 2).clone(), zero!(T),
self.cr(2, 0).clone(), self.cr(2, 1).clone(), self.cr(2, 2).clone(), zero!(T),
2013-06-16 08:03:14 +00:00
zero!(T), zero!(T), zero!(T), one!(T))
}
}
2013-07-15 21:14:10 +00:00
impl<T:Num> Mat3<T> {
#[inline]
pub fn identity() -> Mat3<T> {
Mat3::from_cols(Vec3::unit_x(),
Vec3::unit_y(),
Vec3::unit_z())
}
#[inline]
pub fn zero() -> Mat3<T> {
Mat3::from_cols(Vec3::zero(),
Vec3::zero(),
Vec3::zero())
}
}
2013-07-04 00:40:58 +00:00
impl<T:Clone + Num> Mat3<T> {
#[inline]
pub fn from_value(value: T) -> Mat3<T> {
Mat3::new(value.clone(), zero!(T), zero!(T),
zero!(T), value.clone(), zero!(T),
zero!(T), zero!(T), value.clone())
}
2013-07-13 21:49:23 +00:00
}
2013-07-04 00:40:58 +00:00
2013-07-13 21:49:23 +00:00
impl<T:Clone + Num> NumMat<T,Vec3<T>,[Vec3<T>,..3]> for Mat3<T> {
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_s(&self, value: T) -> Mat3<T> {
Mat3::from_cols(self.c(0).mul_s(value.clone()),
self.c(1).mul_s(value.clone()),
self.c(2).mul_s(value.clone()))
2013-06-16 08:03:14 +00:00
}
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
Vec3::new(self.r(0).dot(vec),
self.r(1).dot(vec),
self.r(2).dot(vec))
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-07 06:00:35 +00:00
#[inline]
pub fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self.c(0).add_v(other.c(0)),
self.c(1).add_v(other.c(1)),
self.c(2).add_v(other.c(2)))
2013-07-07 06:00:35 +00:00
}
#[inline]
pub fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self.c(0).sub_v(other.c(0)),
self.c(1).sub_v(other.c(1)),
self.c(2).sub_v(other.c(2)))
2013-07-07 06:00:35 +00:00
}
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::new(self.r(0).dot(other.c(0)),self.r(1).dot(other.c(0)),self.r(2).dot(other.c(0)),
self.r(0).dot(other.c(1)),self.r(1).dot(other.c(1)),self.r(2).dot(other.c(1)),
self.r(0).dot(other.c(2)),self.r(1).dot(other.c(2)),self.r(2).dot(other.c(2)))
2013-06-16 08:03:14 +00:00
}
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_self_s(&mut self, value: T) {
self.mut_c(0).mul_self_s(value.clone());
self.mut_c(1).mul_self_s(value.clone());
self.mut_c(2).mul_self_s(value.clone());
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn add_self_m(&mut self, other: &Mat3<T>) {
self.mut_c(0).add_self_v(other.c(0));
self.mut_c(1).add_self_v(other.c(1));
self.mut_c(2).add_self_v(other.c(2));
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn sub_self_m(&mut self, other: &Mat3<T>) {
self.mut_c(0).sub_self_v(other.c(0));
self.mut_c(1).sub_self_v(other.c(1));
self.mut_c(2).sub_self_v(other.c(2));
2013-07-04 00:40:58 +00:00
}
pub fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
*self.cr(0, 0) * (*self.cr(1, 1) * *self.cr(2, 2) - *self.cr(2, 1) * *self.cr(1, 2))
- *self.cr(1, 0) * (*self.cr(0, 1) * *self.cr(2, 2) - *self.cr(2, 1) * *self.cr(0, 2))
+ *self.cr(2, 0) * (*self.cr(0, 1) * *self.cr(1, 2) - *self.cr(1, 1) * *self.cr(0, 2))
2013-07-04 00:40:58 +00:00
}
pub fn trace(&self) -> T {
(*self.cr(0, 0)) + (*self.cr(1, 1)) + (*self.cr(2, 2))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn to_identity(&mut self) {
*self = Mat3::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = Mat3::zero();
}
}
impl<T:Clone + Num> Neg<Mat3<T>> for Mat3<T> {
#[inline]
pub fn neg(&self) -> Mat3<T> {
Mat3::from_cols(-*self.c(0),
-*self.c(1),
-*self.c(2))
2013-07-04 00:40:58 +00:00
}
}
impl<T: Clone + Float> Mat3<T> {
2013-06-16 08:03:14 +00:00
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Mat3<T> {
let dir_ = dir.normalize();
let side = dir_.cross(&up.normalize());
let up_ = side.cross(&dir_).normalize();
Mat3::from_axes(up_, side, dir_)
}
}
impl<T:Clone + Float> ToQuat<T> for Mat3<T> {
2013-06-16 08:03:14 +00:00
/// Convert the matrix to a quaternion
pub fn to_quat(&self) -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
let mut s;
let w; let x; let y; let z;
let trace = self.trace();
// FIXME: We don't have any numeric conversions in std yet :P
let half = one!(T) / two!(T);
cond! (
(trace >= zero!(T)) {
s = (one!(T) + trace).sqrt();
w = half * s;
s = half / s;
x = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
y = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
z = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
2013-06-16 08:03:14 +00:00
}
((*self.cr(0, 0) > *self.cr(1, 1))
&& (*self.cr(0, 0) > *self.cr(2, 2))) {
s = (half + (*self.cr(0, 0) - *self.cr(1, 1) - *self.cr(2, 2))).sqrt();
2013-06-16 08:03:14 +00:00
w = half * s;
s = half / s;
x = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
y = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
z = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
2013-06-16 08:03:14 +00:00
}
(*self.cr(1, 1) > *self.cr(2, 2)) {
s = (half + (*self.cr(1, 1) - *self.cr(0, 0) - *self.cr(2, 2))).sqrt();
2013-06-16 08:03:14 +00:00
w = half * s;
s = half / s;
x = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
y = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
z = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
2013-06-16 08:03:14 +00:00
}
_ {
s = (half + (*self.cr(2, 2) - *self.cr(0, 0) - *self.cr(1, 1))).sqrt();
2013-06-16 08:03:14 +00:00
w = half * s;
s = half / s;
x = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
y = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
z = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
2013-06-16 08:03:14 +00:00
}
)
Quat::new(w, x, y, z)
}
}
impl<T:Clone + Float> FloatMat<T,Vec3<T>,[Vec3<T>,..3]> for Mat3<T> {
2013-07-04 00:40:58 +00:00
#[inline]
pub fn inverse(&self) -> Option<Mat3<T>> {
let d = self.determinant();
if d.approx_eq(&zero!(T)) {
None
} else {
Some(Mat3::from_cols(self.c(1).cross(self.c(2)).div_s(d.clone()),
self.c(2).cross(self.c(0)).div_s(d.clone()),
self.c(0).cross(self.c(1)).div_s(d.clone())).transpose())
2013-07-04 00:40:58 +00:00
}
}
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat3::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
self.cr(0, 1).approx_eq(&zero!(T)) &&
self.cr(0, 2).approx_eq(&zero!(T)) &&
2013-07-04 00:40:58 +00:00
self.cr(1, 0).approx_eq(&zero!(T)) &&
self.cr(1, 2).approx_eq(&zero!(T)) &&
2013-07-04 00:40:58 +00:00
self.cr(2, 0).approx_eq(&zero!(T)) &&
self.cr(2, 1).approx_eq(&zero!(T))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat3::identity())
}
#[inline]
pub fn is_symmetric(&self) -> bool {
self.cr(0, 1).approx_eq(self.cr(1, 0)) &&
self.cr(0, 2).approx_eq(self.cr(2, 0)) &&
2013-07-04 00:40:58 +00:00
self.cr(1, 0).approx_eq(self.cr(0, 1)) &&
self.cr(1, 2).approx_eq(self.cr(2, 1)) &&
2013-07-04 00:40:58 +00:00
self.cr(2, 0).approx_eq(self.cr(0, 2)) &&
self.cr(2, 1).approx_eq(self.cr(1, 2))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&zero!(T))
}
}
2013-06-16 08:03:14 +00:00
#[cfg(test)]
mod mat3_tests{
use math::mat::*;
use math::vec::*;
2013-06-16 08:03:14 +00:00
static A: Mat3<float> = Mat3 { x: Vec3 { x: 1.0, y: 4.0, z: 7.0 },
2013-07-04 00:40:58 +00:00
y: Vec3 { x: 2.0, y: 5.0, z: 8.0 },
z: Vec3 { x: 3.0, y: 6.0, z: 9.0 } };
static B: Mat3<float> = Mat3 { x: Vec3 { x: 2.0, y: 5.0, z: 8.0 },
2013-07-04 00:40:58 +00:00
y: Vec3 { x: 3.0, y: 6.0, z: 9.0 },
z: Vec3 { x: 4.0, y: 7.0, z: 10.0 } };
static C: Mat3<float> = Mat3 { x: Vec3 { x: 2.0, y: 4.0, z: 6.0 },
2013-07-04 00:40:58 +00:00
y: Vec3 { x: 0.0, y: 2.0, z: 4.0 },
z: Vec3 { x: 0.0, y: 0.0, z: 1.0 } };
static D: Mat3<float> = Mat3 { x: Vec3 { x: 3.0, y: 2.0, z: 1.0 },
y: Vec3 { x: 2.0, y: 3.0, z: 2.0 },
z: Vec3 { x: 1.0, y: 2.0, z: 3.0 } };
2013-06-16 08:03:14 +00:00
static V: Vec3<float> = Vec3 { x: 1.0, y: 2.0, z: 3.0 };
static F: float = 0.5;
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_swap_c() {
let mut mut_a0 = A;
mut_a0.swap_c(0, 2);
assert_eq!(mut_a0.c(0), A.c(2));
assert_eq!(mut_a0.c(2), A.c(0));
2013-07-04 00:40:58 +00:00
let mut mut_a1 = A;
mut_a1.swap_c(1, 2);
assert_eq!(mut_a1.c(1), A.c(2));
assert_eq!(mut_a1.c(2), A.c(1));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_swap_r() {
let mut mut_a0 = A;
mut_a0.swap_r(0, 2);
assert_eq!(mut_a0.r(0), A.r(2));
assert_eq!(mut_a0.r(2), A.r(0));
2013-07-04 00:40:58 +00:00
let mut mut_a1 = A;
mut_a1.swap_r(1, 2);
assert_eq!(mut_a1.r(1), A.r(2));
assert_eq!(mut_a1.r(2), A.r(1));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_identity() {
2013-06-16 08:03:14 +00:00
assert_eq!(Mat3::identity::<float>(),
Mat3::new::<float>(1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.to_identity();
assert!(mut_a.is_identity());
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_zero() {
2013-06-16 08:03:14 +00:00
assert_eq!(Mat3::zero::<float>(),
Mat3::new::<float>(0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.to_zero();
assert_eq!(mut_a, Mat3::zero::<float>());
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_determinant() {
// assert_eq!(A.determinant(), 0.0);
2013-07-04 00:40:58 +00:00
// TODO
}
#[test]
fn test_trace() {
assert_eq!(A.trace(), 15.0);
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_neg() {
assert_eq!(A.neg(),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(-1.0, -4.0, -7.0,
-2.0, -5.0, -8.0,
-3.0, -6.0, -9.0));
assert_eq!(-A, A.neg());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_mul_s() {
assert_eq!(A.mul_s(F),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(0.5, 2.0, 3.5,
1.0, 2.5, 4.0,
1.5, 3.0, 4.5));
let mut mut_a = A;
mut_a.mul_self_s(F);
assert_eq!(mut_a, A.mul_s(F));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_mul_v() {
assert_eq!(A.mul_v(&V),
2013-07-04 00:40:58 +00:00
Vec3::new::<float>(14.0, 32.0, 50.0));
}
#[test]
fn test_add_m() {
assert_eq!(A.add_m(&B),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(3.0, 9.0, 15.0,
5.0, 11.0, 17.0,
7.0, 13.0, 19.0));
let mut mut_a = A;
mut_a.add_self_m(&B);
assert_eq!(mut_a, A.add_m(&B));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_sub_m() {
assert_eq!(A.sub_m(&B),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(-1.0, -1.0, -1.0,
-1.0, -1.0, -1.0,
-1.0, -1.0, -1.0));
let mut mut_a = A;
mut_a.sub_self_m(&B);
assert_eq!(mut_a, A.sub_m(&B));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_m() {
assert_eq!(A.mul_m(&B),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(36.0, 81.0, 126.0,
42.0, 96.0, 150.0,
48.0, 111.0, 174.0));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_dot() {
assert_eq!(A.dot(&B), 330.0);
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_transpose() {
assert_eq!(A.transpose(),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.transpose_self();
assert_eq!(mut_a, A.transpose());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_inverse() {
assert!(Mat3::identity::<float>().inverse().unwrap().is_identity());
assert_eq!(A.inverse(), None);
2013-06-16 08:03:14 +00:00
assert_eq!(C.inverse().unwrap(),
2013-06-16 08:03:14 +00:00
Mat3::new::<float>(0.5, -1.0, 1.0,
0.0, 0.5, -2.0,
0.0, 0.0, 1.0));
let mut mut_c = C;
2013-07-04 00:40:58 +00:00
mut_c.invert_self();
assert_eq!(mut_c, C.inverse().unwrap());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_predicates() {
assert!(Mat3::identity::<float>().is_identity());
assert!(Mat3::identity::<float>().is_symmetric());
assert!(Mat3::identity::<float>().is_diagonal());
assert!(!Mat3::identity::<float>().is_rotated());
assert!(Mat3::identity::<float>().is_invertible());
2013-06-16 08:03:14 +00:00
assert!(!A.is_identity());
assert!(!A.is_symmetric());
assert!(!A.is_diagonal());
assert!(A.is_rotated());
assert!(!A.is_invertible());
assert!(!D.is_identity());
assert!(D.is_symmetric());
assert!(!D.is_diagonal());
assert!(D.is_rotated());
assert!(D.is_invertible());
2013-06-16 08:03:14 +00:00
assert!(Mat3::from_value::<float>(6.0).is_diagonal());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_to_mat4() {
assert_eq!(A.to_mat4(),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(1.0, 4.0, 7.0, 0.0,
2.0, 5.0, 8.0, 0.0,
3.0, 6.0, 9.0, 0.0,
0.0, 0.0, 0.0, 1.0));
}
#[test]
2013-07-04 00:40:58 +00:00
fn test_approx() {
2013-06-16 08:03:14 +00:00
assert!(!Mat3::new::<float>(0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001)
.approx_eq(&Mat3::zero::<float>()));
assert!(Mat3::new::<float>(0.0000001, 0.0000001, 0.0000001,
2013-07-07 06:00:35 +00:00
0.0000001, 0.0000001, 0.0000001,
0.0000001, 0.0000001, 0.0000001)
2013-06-16 08:03:14 +00:00
.approx_eq(&Mat3::zero::<float>()));
}
}
#[deriving(Clone, Eq)]
2013-06-16 08:03:14 +00:00
pub struct Mat4<T> {
x: Vec4<T>,
y: Vec4<T>,
z: Vec4<T>,
w: Vec4<T>,
}
// GLSL-style type aliases
pub type mat4 = Mat4<f32>;
pub type dmat4 = Mat4<f64>;
// Rust-style type aliases
pub type Mat4f = Mat4<float>;
pub type Mat4f32 = Mat4<f32>;
pub type Mat4f64 = Mat4<f64>;
2013-06-16 08:03:14 +00:00
2013-07-14 03:22:45 +00:00
impl_dimensioned!(Mat4, Vec4<T>, 4)
impl_swap_components!(Mat4)
2013-07-12 01:22:14 +00:00
impl_approx!(Mat4 { x, y, z, w })
2013-06-16 08:03:14 +00:00
pub trait ToMat4<T> {
pub fn to_mat4(&self) -> Mat4<T>;
}
impl<T> Mat4<T> {
#[inline]
pub fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
Mat4::from_cols(Vec4::new(c0r0, c0r1, c0r2, c0r3),
Vec4::new(c1r0, c1r1, c1r2, c1r3),
Vec4::new(c2r0, c2r1, c2r2, c2r3),
Vec4::new(c3r0, c3r1, c3r2, c3r3))
}
#[inline]
pub fn from_cols(c0: Vec4<T>,
c1: Vec4<T>,
c2: Vec4<T>,
c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: c0, y: c1, z: c2, w: c3 }
}
}
2013-07-13 21:49:23 +00:00
impl<T:Clone> Mat<T,Vec4<T>,[Vec4<T>,..4]> for Mat4<T> {
#[inline]
pub fn c<'a>(&'a self, c: uint) -> &'a Vec4<T> {
self.i(c)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn r(&self, r: uint) -> Vec4<T> {
Vec4::new(self.i(0).i(r).clone(),
self.i(1).i(r).clone(),
self.i(2).i(r).clone(),
self.i(3).i(r).clone())
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn cr<'a>(&'a self, c: uint, r: uint) -> &'a T {
self.i(c).i(r)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn mut_c<'a>(&'a mut self, c: uint) -> &'a mut Vec4<T> {
self.mut_i(c)
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn mut_cr<'a>(&'a mut self, c: uint, r: uint) -> &'a mut T {
self.mut_i(c).mut_i(r)
2013-07-13 21:49:23 +00:00
}
2013-07-07 06:00:35 +00:00
#[inline]
pub fn swap_c(&mut self, a: uint, b: uint) {
let tmp = self.c(a).clone();
*self.mut_c(a) = self.c(b).clone();
*self.mut_c(b) = tmp;
2013-07-07 06:00:35 +00:00
}
#[inline]
pub fn swap_r(&mut self, a: uint, b: uint) {
self.mut_c(0).swap(a, b);
self.mut_c(1).swap(a, b);
self.mut_c(2).swap(a, b);
self.mut_c(3).swap(a, b);
2013-07-07 06:00:35 +00:00
}
2013-07-13 21:49:23 +00:00
#[inline]
pub fn swap_cr(&mut self, (col_a, row_a): (uint, uint),
2013-07-13 21:49:23 +00:00
(col_b, row_b): (uint, uint)) {
let tmp = self.cr(col_a, row_a).clone();
*self.mut_cr(col_a, row_a) = self.cr(col_b, row_b).clone();
*self.mut_cr(col_b, row_b) = tmp;
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn transpose(&self) -> Mat4<T> {
Mat4::new(self.cr(0, 0).clone(),self.cr(1, 0).clone(),self.cr(2, 0).clone(),self.cr(3, 0).clone(),
self.cr(0, 1).clone(),self.cr(1, 1).clone(),self.cr(2, 1).clone(),self.cr(3, 1).clone(),
self.cr(0, 2).clone(),self.cr(1, 2).clone(),self.cr(2, 2).clone(),self.cr(3, 2).clone(),
self.cr(0, 3).clone(),self.cr(1, 3).clone(),self.cr(2, 3).clone(),self.cr(3, 3).clone())
2013-07-13 21:49:23 +00:00
}
#[inline]
pub fn transpose_self(&mut self) {
self.swap_cr((0, 1), (1, 0));
self.swap_cr((0, 2), (2, 0));
self.swap_cr((0, 3), (3, 0));
self.swap_cr((1, 2), (2, 1));
self.swap_cr((1, 3), (3, 1));
self.swap_cr((2, 3), (3, 2));
2013-07-13 21:49:23 +00:00
}
2013-07-07 06:00:35 +00:00
}
2013-07-15 21:14:10 +00:00
impl<T:Num> Mat4<T> {
#[inline]
pub fn identity() -> Mat4<T> {
Mat4::from_cols(Vec4::unit_x(),
Vec4::unit_y(),
Vec4::unit_z(),
Vec4::unit_w())
}
#[inline]
pub fn zero() -> Mat4<T> {
Mat4::from_cols(Vec4::zero(),
Vec4::zero(),
Vec4::zero(),
Vec4::zero())
}
}
2013-07-04 00:40:58 +00:00
impl<T:Clone + Num> Mat4<T> {
#[inline]
pub fn from_value(value: T) -> Mat4<T> {
Mat4::new(value.clone(), zero!(T), zero!(T), zero!(T),
zero!(T), value.clone(), zero!(T), zero!(T),
zero!(T), zero!(T), value.clone(), zero!(T),
zero!(T), zero!(T), zero!(T), value.clone())
}
2013-07-13 21:49:23 +00:00
}
2013-07-04 00:40:58 +00:00
2013-07-13 21:49:23 +00:00
impl<T:Clone + Num> NumMat<T,Vec4<T>,[Vec4<T>,..4]> for Mat4<T> {
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_s(&self, value: T) -> Mat4<T> {
Mat4::from_cols(self.c(0).mul_s(value.clone()),
self.c(1).mul_s(value.clone()),
self.c(2).mul_s(value.clone()),
self.c(3).mul_s(value.clone()))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vec4::new(self.r(0).dot(vec),
self.r(1).dot(vec),
self.r(2).dot(vec),
self.r(3).dot(vec))
2013-07-04 00:40:58 +00:00
}
2013-07-07 06:00:35 +00:00
#[inline]
pub fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self.c(0).add_v(other.c(0)),
self.c(1).add_v(other.c(1)),
self.c(2).add_v(other.c(2)),
self.c(3).add_v(other.c(3)))
2013-07-07 06:00:35 +00:00
}
#[inline]
pub fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self.c(0).sub_v(other.c(0)),
self.c(1).sub_v(other.c(1)),
self.c(2).sub_v(other.c(2)),
self.c(3).sub_v(other.c(3)))
2013-07-07 06:00:35 +00:00
}
2013-07-04 00:40:58 +00:00
#[inline]
pub fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::new(self.r(0).dot(other.c(0)), self.r(1).dot(other.c(0)), self.r(2).dot(other.c(0)), self.r(3).dot(other.c(0)),
self.r(0).dot(other.c(1)), self.r(1).dot(other.c(1)), self.r(2).dot(other.c(1)), self.r(3).dot(other.c(1)),
self.r(0).dot(other.c(2)), self.r(1).dot(other.c(2)), self.r(2).dot(other.c(2)), self.r(3).dot(other.c(2)),
self.r(0).dot(other.c(3)), self.r(1).dot(other.c(3)), self.r(2).dot(other.c(3)), self.r(3).dot(other.c(3)))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn mul_self_s(&mut self, value: T) {
self.mut_c(0).mul_self_s(value.clone());
self.mut_c(1).mul_self_s(value.clone());
self.mut_c(2).mul_self_s(value.clone());
self.mut_c(3).mul_self_s(value.clone());
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn add_self_m(&mut self, other: &Mat4<T>) {
self.mut_c(0).add_self_v(other.c(0));
self.mut_c(1).add_self_v(other.c(1));
self.mut_c(2).add_self_v(other.c(2));
self.mut_c(3).add_self_v(other.c(3));
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn sub_self_m(&mut self, other: &Mat4<T>) {
self.mut_c(0).sub_self_v(other.c(0));
self.mut_c(1).sub_self_v(other.c(1));
self.mut_c(2).sub_self_v(other.c(2));
self.mut_c(3).sub_self_v(other.c(3));
2013-07-04 00:40:58 +00:00
}
pub fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
let m0 = Mat3::new(self.cr(1, 1).clone(), self.cr(2, 1).clone(), self.cr(3, 1).clone(),
self.cr(1, 2).clone(), self.cr(2, 2).clone(), self.cr(3, 2).clone(),
self.cr(1, 3).clone(), self.cr(2, 3).clone(), self.cr(3, 3).clone());
let m1 = Mat3::new(self.cr(0, 1).clone(), self.cr(2, 1).clone(), self.cr(3, 1).clone(),
self.cr(0, 2).clone(), self.cr(2, 2).clone(), self.cr(3, 2).clone(),
self.cr(0, 3).clone(), self.cr(2, 3).clone(), self.cr(3, 3).clone());
let m2 = Mat3::new(self.cr(0, 1).clone(), self.cr(1, 1).clone(), self.cr(3, 1).clone(),
self.cr(0, 2).clone(), self.cr(1, 2).clone(), self.cr(3, 2).clone(),
self.cr(0, 3).clone(), self.cr(1, 3).clone(), self.cr(3, 3).clone());
let m3 = Mat3::new(self.cr(0, 1).clone(), self.cr(1, 1).clone(), self.cr(2, 1).clone(),
self.cr(0, 2).clone(), self.cr(1, 2).clone(), self.cr(2, 2).clone(),
self.cr(0, 3).clone(), self.cr(1, 3).clone(), self.cr(2, 3).clone());
self.cr(0, 0) * m0.determinant() -
self.cr(1, 0) * m1.determinant() +
self.cr(2, 0) * m2.determinant() -
self.cr(3, 0) * m3.determinant()
2013-07-04 00:40:58 +00:00
}
pub fn trace(&self) -> T {
*self.cr(0, 0) + *self.cr(1, 1) + *self.cr(2, 2) + *self.cr(3, 3)
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn to_identity(&mut self) {
*self = Mat4::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = Mat4::zero();
}
}
impl<T:Clone + Num> Neg<Mat4<T>> for Mat4<T> {
#[inline]
pub fn neg(&self) -> Mat4<T> {
Mat4::from_cols(-*self.c(0),
-*self.c(1),
-*self.c(2),
-*self.c(3))
2013-07-04 00:40:58 +00:00
}
}
2013-07-13 21:49:23 +00:00
impl<T:Clone + Float> FloatMat<T,Vec4<T>,[Vec4<T>,..4]> for Mat4<T> {
2013-07-04 00:40:58 +00:00
#[inline]
pub fn inverse(&self) -> Option<Mat4<T>> {
use std::uint;
if self.is_invertible() {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = self.clone();
let mut I = Mat4::identity::<T>();
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if A.cr(j, i).abs() > A.cr(j, i1).abs() {
2013-07-04 00:40:58 +00:00
i1 = i;
}
}
2013-07-14 03:22:45 +00:00
// SwapComponents columns i1 and j in A and I to
2013-07-04 00:40:58 +00:00
// put pivot on diagonal
A.swap_c(i1, j);
I.swap_c(i1, j);
2013-07-04 00:40:58 +00:00
// Scale col j to have a unit diagonal
let ajj = A.cr(j, j).clone();
I.mut_c(j).div_self_s(ajj.clone());
A.mut_c(j).div_self_s(ajj.clone());
2013-07-04 00:40:58 +00:00
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
let ij_mul_aij = I.c(j).mul_s(A.cr(i, j).clone());
let aj_mul_aij = A.c(j).mul_s(A.cr(i, j).clone());
I.mut_c(i).sub_self_v(&ij_mul_aij);
A.mut_c(i).sub_self_v(&aj_mul_aij);
2013-07-04 00:40:58 +00:00
}
}
}
Some(I)
} else {
None
}
}
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat4::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
self.cr(0, 1).approx_eq(&zero!(T)) &&
self.cr(0, 2).approx_eq(&zero!(T)) &&
self.cr(0, 3).approx_eq(&zero!(T)) &&
2013-07-04 00:40:58 +00:00
self.cr(1, 0).approx_eq(&zero!(T)) &&
self.cr(1, 2).approx_eq(&zero!(T)) &&
self.cr(1, 3).approx_eq(&zero!(T)) &&
2013-07-04 00:40:58 +00:00
self.cr(2, 0).approx_eq(&zero!(T)) &&
self.cr(2, 1).approx_eq(&zero!(T)) &&
self.cr(2, 3).approx_eq(&zero!(T)) &&
2013-07-04 00:40:58 +00:00
self.cr(3, 0).approx_eq(&zero!(T)) &&
self.cr(3, 1).approx_eq(&zero!(T)) &&
self.cr(3, 2).approx_eq(&zero!(T))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat4::identity())
}
#[inline]
pub fn is_symmetric(&self) -> bool {
self.cr(0, 1).approx_eq(self.cr(1, 0)) &&
self.cr(0, 2).approx_eq(self.cr(2, 0)) &&
self.cr(0, 3).approx_eq(self.cr(3, 0)) &&
2013-07-04 00:40:58 +00:00
self.cr(1, 0).approx_eq(self.cr(0, 1)) &&
self.cr(1, 2).approx_eq(self.cr(2, 1)) &&
self.cr(1, 3).approx_eq(self.cr(3, 1)) &&
2013-07-04 00:40:58 +00:00
self.cr(2, 0).approx_eq(self.cr(0, 2)) &&
self.cr(2, 1).approx_eq(self.cr(1, 2)) &&
self.cr(2, 3).approx_eq(self.cr(3, 2)) &&
2013-07-04 00:40:58 +00:00
self.cr(3, 0).approx_eq(self.cr(0, 3)) &&
self.cr(3, 1).approx_eq(self.cr(1, 3)) &&
self.cr(3, 2).approx_eq(self.cr(2, 3))
2013-07-04 00:40:58 +00:00
}
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&zero!(T))
}
}
2013-06-16 08:03:14 +00:00
#[cfg(test)]
mod mat4_tests {
use math::mat::*;
use math::vec::*;
2013-06-16 08:03:14 +00:00
static A: Mat4<float> = Mat4 { x: Vec4 { x: 1.0, y: 5.0, z: 9.0, w: 13.0 },
2013-07-04 00:40:58 +00:00
y: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 },
z: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 },
w: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 } };
static B: Mat4<float> = Mat4 { x: Vec4 { x: 2.0, y: 6.0, z: 10.0, w: 14.0 },
2013-07-04 00:40:58 +00:00
y: Vec4 { x: 3.0, y: 7.0, z: 11.0, w: 15.0 },
z: Vec4 { x: 4.0, y: 8.0, z: 12.0, w: 16.0 },
w: Vec4 { x: 5.0, y: 9.0, z: 13.0, w: 17.0 } };
static C: Mat4<float> = Mat4 { x: Vec4 { x: 3.0, y: 2.0, z: 1.0, w: 1.0 },
2013-07-04 00:40:58 +00:00
y: Vec4 { x: 2.0, y: 3.0, z: 2.0, w: 2.0 },
z: Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 3.0 },
w: Vec4 { x: 0.0, y: 1.0, z: 1.0, w: 0.0 } };
static D: Mat4<float> = Mat4 { x: Vec4 { x: 4.0, y: 3.0, z: 2.0, w: 1.0 },
y: Vec4 { x: 3.0, y: 4.0, z: 3.0, w: 2.0 },
z: Vec4 { x: 2.0, y: 3.0, z: 4.0, w: 3.0 },
w: Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 } };
2013-07-04 00:40:58 +00:00
static V: Vec4<float> = Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 };
static F: float = 0.5;
2013-07-04 00:40:58 +00:00
#[test]
fn test_swap_c() {
let mut mut_a0 = A;
mut_a0.swap_c(0, 2);
assert_eq!(mut_a0.c(0), A.c(2));
assert_eq!(mut_a0.c(2), A.c(0));
2013-07-04 00:40:58 +00:00
let mut mut_a1 = A;
mut_a1.swap_c(1, 2);
assert_eq!(mut_a1.c(1), A.c(2));
assert_eq!(mut_a1.c(2), A.c(1));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
#[test]
fn test_swap_r() {
let mut mut_a0 = A;
mut_a0.swap_r(0, 2);
assert_eq!(mut_a0.r(0), A.r(2));
assert_eq!(mut_a0.r(2), A.r(0));
2013-07-04 00:40:58 +00:00
let mut mut_a1 = A;
mut_a1.swap_r(1, 2);
assert_eq!(mut_a1.r(1), A.r(2));
assert_eq!(mut_a1.r(2), A.r(1));
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_identity() {
2013-06-16 08:03:14 +00:00
assert_eq!(Mat4::identity::<float>(),
Mat4::new::<float>(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.to_identity();
assert!(mut_a.is_identity());
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_zero() {
2013-06-16 08:03:14 +00:00
assert_eq!(Mat4::zero::<float>(),
Mat4::new::<float>(0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.to_zero();
assert_eq!(mut_a, Mat4::zero::<float>());
}
#[test]
fn test_determinant() {
assert_eq!(A.determinant(), 0.0);
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_trace() {
assert_eq!(A.trace(), 34.0);
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_neg() {
assert_eq!(A.neg(),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(-1.0, -5.0, -9.0, -13.0,
-2.0, -6.0, -10.0, -14.0,
-3.0, -7.0, -11.0, -15.0,
-4.0, -8.0, -12.0, -16.0));
assert_eq!(-A, A.neg());
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_s() {
assert_eq!(A.mul_s(F),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(0.5, 2.5, 4.5, 6.5,
1.0, 3.0, 5.0, 7.0,
1.5, 3.5, 5.5, 7.5,
2.0, 4.0, 6.0, 8.0));
let mut mut_a = A;
mut_a.mul_self_s(F);
assert_eq!(mut_a, A.mul_s(F));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_v() {
assert_eq!(A.mul_v(&V),
2013-06-16 08:03:14 +00:00
Vec4::new::<float>(30.0, 70.0, 110.0, 150.0));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_add_m() {
assert_eq!(A.add_m(&B),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(3.0, 11.0, 19.0, 27.0,
5.0, 13.0, 21.0, 29.0,
7.0, 15.0, 23.0, 31.0,
9.0, 17.0, 25.0, 33.0));
let mut mut_a = A;
mut_a.add_self_m(&B);
assert_eq!(mut_a, A.add_m(&B));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_sub_m() {
assert_eq!(A.sub_m(&B),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(-1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0));
let mut mut_a = A;
mut_a.sub_self_m(&B);
assert_eq!(mut_a, A.sub_m(&B));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_mul_m() {
assert_eq!(A.mul_m(&B),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>(100.0, 228.0, 356.0, 484.0,
110.0, 254.0, 398.0, 542.0,
120.0, 280.0, 440.0, 600.0,
130.0, 306.0, 482.0, 658.0));
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_dot() {
assert_eq!(A.dot(&B), 1632.0);
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_transpose() {
assert_eq!(A.transpose(),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>( 1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0,
9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0));
let mut mut_a = A;
2013-07-04 00:40:58 +00:00
mut_a.transpose_self();
assert_eq!(mut_a, A.transpose());
2013-07-04 00:40:58 +00:00
}
#[test]
fn test_inverse() {
assert!(Mat4::identity::<float>().inverse().unwrap().is_identity());
2013-06-16 08:03:14 +00:00
assert_approx_eq!(C.inverse().unwrap(),
2013-06-16 08:03:14 +00:00
Mat4::new::<float>( 5.0, -4.0, 1.0, 0.0,
-4.0, 8.0, -4.0, 0.0,
4.0, -8.0, 4.0, 8.0,
-3.0, 4.0, 1.0, -8.0).mul_s(0.125));
let mut mut_c = C;
2013-07-04 00:40:58 +00:00
mut_c.invert_self();
assert_eq!(mut_c, C.inverse().unwrap());
2013-07-04 00:40:58 +00:00
}
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
#[test]
fn test_predicates() {
assert!(Mat3::identity::<float>().is_identity());
assert!(Mat3::identity::<float>().is_symmetric());
assert!(Mat3::identity::<float>().is_diagonal());
assert!(!Mat3::identity::<float>().is_rotated());
assert!(Mat3::identity::<float>().is_invertible());
2013-06-16 08:03:14 +00:00
assert!(!A.is_identity());
assert!(!A.is_symmetric());
assert!(!A.is_diagonal());
assert!(A.is_rotated());
assert!(!A.is_invertible());
assert!(!D.is_identity());
assert!(D.is_symmetric());
assert!(!D.is_diagonal());
assert!(D.is_rotated());
assert!(D.is_invertible());
2013-06-16 08:03:14 +00:00
2013-07-04 00:40:58 +00:00
assert!(Mat3::from_value::<float>(6.0).is_diagonal());
2013-06-16 08:03:14 +00:00
}
#[test]
2013-07-04 00:40:58 +00:00
fn test_approx() {
2013-06-16 08:03:14 +00:00
assert!(!Mat4::new::<float>(0.000001, 0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001, 0.000001)
.approx_eq(&Mat4::zero::<float>()));
assert!(Mat4::new::<float>(0.0000001, 0.0000001, 0.0000001, 0.0000001,
0.0000001, 0.0000001, 0.0000001, 0.0000001,
0.0000001, 0.0000001, 0.0000001, 0.0000001,
0.0000001, 0.0000001, 0.0000001, 0.0000001)
.approx_eq(&Mat4::zero::<float>()));
}
}