cgmath/src/mat.rs

1762 lines
54 KiB
Rust
Raw Normal View History

// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
2012-12-13 13:01:42 +00:00
use vec::*;
use quat::Quat;
use num::NumAssign;
/**
2012-12-03 22:31:26 +00:00
* The base square matrix trait
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
* * `V` - The type of the row and column vectors. Should have components of a
* floating point type and have the same number of dimensions as the
* number of rows and columns in the matrix.
*/
pub trait BaseMat<T,V>: Eq + Neg<Self> {
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The column vector at `i`
2012-12-03 22:31:26 +00:00
*/
fn col<'a>(&'a self, i: uint) -> &'a V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The row vector at `i`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn row(&self, i: uint) -> V;
/**
* Construct a diagonal matrix with the major diagonal set to `value`
*/
2013-03-28 10:37:25 +00:00
fn from_value(value: T) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The identity matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:37:25 +00:00
fn identity() -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* A matrix with all elements set to zero
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:37:25 +00:00
fn zero() -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The scalar multiplication of this matrix and `value`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn mul_t(&self, value: T) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix vector product of the matrix and `vec`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn mul_v(&self, vec: &V) -> V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix addition of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn add_m(&self, other: &Self) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The difference between the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn sub_m(&self, other: &Self) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix product of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn mul_m(&self, other: &Self) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix dot product of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn dot(&self, other: &Self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The determinant of the matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn determinant(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The sum of the main diagonal of the matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn trace(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
* Returns the inverse of the matrix
*
* # Return value
*
2012-12-05 08:09:53 +00:00
* * `Some(m)` - if the inversion was successful, where `m` is the inverted matrix
* * `None` - if the inversion was unsuccessful (because the matrix was not invertable)
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn inverse(&self) -> Option<Self>;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The transposed matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn transpose(&self) -> Self;
2013-05-07 15:00:06 +00:00
/**
* # Return value
*
* A mutable reference to the column at `i`
*/
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut V;
/**
* Swap two columns of the matrix in place
*/
fn swap_cols(&mut self, a: uint, b: uint);
/**
* Swap two rows of the matrix in place
*/
fn swap_rows(&mut self, a: uint, b: uint);
/**
* Sets the matrix to `other`
*/
fn set(&mut self, other: &Self);
/**
* Sets the matrix to the identity matrix
*/
fn to_identity(&mut self);
/**
* Sets each element of the matrix to zero
*/
fn to_zero(&mut self);
/**
* Multiplies the matrix by a scalar
*/
fn mul_self_t(&mut self, value: T);
/**
* Add the matrix `other` to `self`
*/
fn add_self_m(&mut self, other: &Self);
/**
* Subtract the matrix `other` from `self`
*/
fn sub_self_m(&mut self, other: &Self);
/**
* Sets the matrix to its inverse
*
* # Failure
*
* Fails if the matrix is not invertable. Make sure you check with the
* `is_invertible` method before you attempt this!
*/
fn invert_self(&mut self);
/**
* Sets the matrix to its transpose
*/
fn transpose_self(&mut self);
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is an identity matrix
*
* # Return value
*
2012-12-05 08:09:53 +00:00
* `true` if the matrix is approximately equal to the identity matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_identity(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is diagonal
*
* # Return value
*
* `true` all the elements outside the main diagonal are approximately
* equal to zero.
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_diagonal(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is rotated
*
* # Return value
*
* `true` if the matrix is not approximately equal to the identity matrix.
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_rotated(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is symmetric
*
* # Return value
*
* `true` if the matrix is approximately equal to its transpose).
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_symmetric(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is invertable
*
* # Return value
*
* `true` if the matrix is invertable
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_invertible(&self) -> bool;
2012-12-12 01:29:35 +00:00
/**
* # Return value
*
* A pointer to the first element of the matrix
*/
2013-03-28 10:35:51 +00:00
fn to_ptr(&self) -> *T;
}
/**
* A 2 x 2 matrix
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat2<T,V>: BaseMat<T,V> {
2013-03-28 10:37:25 +00:00
fn new(c0r0: T, c0r1: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_cols(c0: V, c1: V) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle(radians: T) -> Self;
2013-03-28 10:35:51 +00:00
fn to_mat3(&self) -> Mat3<T>;
2013-03-28 10:35:51 +00:00
fn to_mat4(&self) -> Mat4<T>;
}
/**
* A 3 x 3 matrix
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat3<T,V>: BaseMat<T,V> {
2013-03-28 10:37:25 +00:00
fn new(c0r0:T, c0r1:T, c0r2:T,
2013-04-02 04:01:38 +00:00
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_cols(c0: V, c1: V, c2: V) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_x(radians: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_y(radians: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_z(radians: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Self;
2013-03-28 10:37:25 +00:00
fn from_axes(x: V, y: V, z: V) -> Self;
2013-03-28 10:37:25 +00:00
fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Self;
2013-03-28 10:35:51 +00:00
fn to_mat4(&self) -> Mat4<T>;
2013-03-28 10:35:51 +00:00
fn to_quat(&self) -> Quat<T>;
}
/**
* A 4 x 4 matrix
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat4<T,V>: BaseMat<T,V> {
2013-03-28 10:37:25 +00:00
fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_cols(c0: V, c1: V, c2: V, c3: V) -> Self;
}
/**
* A 2 x 2 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> BaseMat<T, Vec2<T>> for Mat2<T> {
#[inline(always)]
fn col<'a>(&'a self, i: uint) -> &'a Vec2<T> {
unsafe { &'a transmute::<&'a Mat2<T>, &'a [Vec2<T>,..2]>(self)[i] }
}
#[inline(always)]
fn row(&self, i: uint) -> Vec2<T> {
BaseVec2::new(*self.col(0).index(i),
*self.col(1).index(i))
}
/**
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1
* +-----+-----+
* r0 | val | 0 |
* +-----+-----+
* r1 | 0 | val |
* +-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat2<T> {
BaseMat2::new(value, Zero::zero(),
Zero::zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 1 | 0 |
* +----+----+
* r1 | 0 | 1 |
* +----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat2<T> {
BaseMat2::new( One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 0 | 0 |
* +----+----+
* r1 | 0 | 0 |
* +----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat2<T> {
BaseMat2::new(Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat2<T> {
BaseMat2::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
2013-04-02 05:12:13 +00:00
BaseVec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
BaseMat2::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)))
}
#[inline(always)]
fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
BaseMat2::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)))
}
#[inline(always)]
fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
BaseMat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)),
self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)))
}
fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
(*self.col(0).index(0)) *
(*self.col(1).index(1)) -
(*self.col(1).index(0)) *
(*self.col(0).index(1))
}
fn trace(&self) -> T {
(*self.col(0).index(0)) +
(*self.col(1).index(1))
}
#[inline(always)]
fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
None
} else {
Some(BaseMat2::new( self.col(1).index(1)/d, -self.col(0).index(1)/d,
-self.col(1).index(0)/d, self.col(0).index(0)/d))
}
}
#[inline(always)]
fn transpose(&self) -> Mat2<T> {
BaseMat2::new(*self.col(0).index(0), *self.col(1).index(0),
*self.col(0).index(1), *self.col(1).index(1))
}
2013-05-07 15:00:06 +00:00
#[inline(always)]
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2<T> {
unsafe { &'a mut transmute::<&'a mut Mat2<T>, &'a mut [Vec2<T>,..2]>(self)[i] }
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
2013-05-23 21:55:23 +00:00
*self.col_mut(b) = tmp;
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat2<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.x.mul_self_t(value);
self.y.mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat2<T>) {
self.x.add_self_v(other.col(0));
self.y.add_self_v(other.col(1));
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat2<T>) {
self.x.sub_self_v(other.col(0));
self.y.sub_self_v(other.col(1));
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
let tmp01 = *self.col(0).index(1);
let tmp10 = *self.col(1).index(0);
2013-05-23 21:55:23 +00:00
*self.col_mut(0).index_mut(1) = *self.col(1).index(0);
*self.col_mut(1).index_mut(0) = *self.col(0).index(1);
2013-05-23 21:55:23 +00:00
*self.col_mut(1).index_mut(0) = tmp01;
*self.col_mut(0).index_mut(1) = tmp10;
}
#[inline(always)]
fn is_identity(&self) -> bool {
2013-05-07 15:00:06 +00:00
self.approx_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self.col(0).index(1).approx_eq(&Zero::zero()) &&
self.col(1).index(0).approx_eq(&Zero::zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
2013-05-07 15:00:06 +00:00
!self.approx_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self.col(0).index(1).approx_eq(self.col(1).index(0)) &&
self.col(1).index(0).approx_eq(self.col(0).index(1))
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
2013-05-22 07:01:52 +00:00
unsafe { transmute(self) }
}
}
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> BaseMat2<T, Vec2<T>> for Mat2<T> {
/**
* Construct a 2 x 2 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1` - the first column of the matrix
* * `c1r0`, `c1r1` - the second column of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0r0 | c1r0 |
* +------+------+
* r1 | c0r1 | c1r1 |
* +------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0: T, c0r1: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::from_cols(BaseVec2::new::<T,Vec2<T>>(c0r0, c0r1),
BaseVec2::new::<T,Vec2<T>>(c1r0, c1r1))
}
/**
* Construct a 2 x 2 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0.x | c1.x |
* +------+------+
* r1 | c0.y | c1.y |
* +------+------+
* ~~~
*/
#[inline(always)]
2013-04-02 04:01:38 +00:00
fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: c0, y: c1 }
}
#[inline(always)]
fn from_angle(radians: T) -> Mat2<T> {
let cos_theta = radians.cos();
let sin_theta = radians.sin();
2013-04-02 05:12:13 +00:00
BaseMat2::new(cos_theta, -sin_theta,
sin_theta, cos_theta)
}
/**
* Returns the the matrix with an extra row and column added
* ~~~
* c0 c1 c0 c1 c2
* +----+----+ +----+----+----+
* r0 | a | b | r0 | a | b | 0 |
* +----+----+ +----+----+----+
* r1 | c | d | => r1 | c | d | 0 |
* +----+----+ +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat3(&self) -> Mat3<T> {
BaseMat3::new(*self.col(0).index(0), *self.col(0).index(1), Zero::zero(),
*self.col(1).index(0), *self.col(1).index(1), Zero::zero(),
Zero::zero(), Zero::zero(), One::one())
}
/**
* Returns the the matrix with an extra two rows and columns added
* ~~~
* c0 c1 c0 c1 c2 c3
* +----+----+ +----+----+----+----+
* r0 | a | b | r0 | a | b | 0 | 0 |
* +----+----+ +----+----+----+----+
* r1 | c | d | => r1 | c | d | 0 | 0 |
* +----+----+ +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat4(&self) -> Mat4<T> {
BaseMat4::new(*self.col(0).index(0), *self.col(0).index(1), Zero::zero(), Zero::zero(),
*self.col(1).index(0), *self.col(1).index(1), Zero::zero(), Zero::zero(),
Zero::zero(), Zero::zero(), One::one(), Zero::zero(),
Zero::zero(), Zero::zero(), Zero::zero(), One::one())
}
}
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> Neg<Mat2<T>> for Mat2<T> {
#[inline(always)]
fn neg(&self) -> Mat2<T> {
BaseMat2::from_cols(-self.col(0), -self.col(1))
}
}
impl<T:Copy + Float + NumAssign> ApproxEq<T> for Mat2<T> {
#[inline(always)]
2013-05-07 15:00:06 +00:00
fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
2013-05-07 15:00:06 +00:00
fn approx_eq(&self, other: &Mat2<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
fn approx_eq_eps(&self, other: &Mat2<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon)
}
}
/**
* A 3 x 3 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> BaseMat<T, Vec3<T>> for Mat3<T> {
#[inline(always)]
fn col<'a>(&'a self, i: uint) -> &'a Vec3<T> {
unsafe { &'a transmute::<&'a Mat3<T>, &'a [Vec3<T>,..3]>(self)[i] }
}
#[inline(always)]
fn row(&self, i: uint) -> Vec3<T> {
BaseVec3::new(*self.col(0).index(i),
*self.col(1).index(i),
*self.col(2).index(i))
}
/**
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2
* +-----+-----+-----+
* r0 | val | 0 | 0 |
* +-----+-----+-----+
* r1 | 0 | val | 0 |
* +-----+-----+-----+
* r2 | 0 | 0 | val |
* +-----+-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat3<T> {
BaseMat3::new(value, Zero::zero(), Zero::zero(),
Zero::zero(), value, Zero::zero(),
Zero::zero(), Zero::zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 1 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 1 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat3<T> {
BaseMat3::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 0 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 0 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 0 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat3<T> {
BaseMat3::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat3<T> {
BaseMat3::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value),
self.col(2).mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
2013-04-02 05:12:13 +00:00
BaseVec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
BaseMat3::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)),
self.col(2).add_v(other.col(2)))
}
#[inline(always)]
fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
BaseMat3::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)),
self.col(2).sub_v(other.col(2)))
}
#[inline(always)]
fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
BaseMat3::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
self.row(2).dot(other.col(0)),
self.row(0).dot(other.col(1)),
self.row(1).dot(other.col(1)),
self.row(2).dot(other.col(1)),
self.row(0).dot(other.col(2)),
self.row(1).dot(other.col(2)),
self.row(2).dot(other.col(2)))
}
fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
self.col(0).dot(&self.col(1).cross(self.col(2)))
}
fn trace(&self) -> T {
*self.col(0).index(0) +
*self.col(1).index(1) +
*self.col(2).index(2)
}
// #[inline(always)]
fn inverse(&self) -> Option<Mat3<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
None
} else {
let m: Mat3<T> = BaseMat3::from_cols(self.col(1).cross(self.col(2)).div_t(d),
self.col(2).cross(self.col(0)).div_t(d),
self.col(0).cross(self.col(1)).div_t(d));
Some(m.transpose())
}
}
#[inline(always)]
fn transpose(&self) -> Mat3<T> {
BaseMat3::new(*self.col(0).index(0), *self.col(1).index(0), *self.col(2).index(0),
*self.col(0).index(1), *self.col(1).index(1), *self.col(2).index(1),
*self.col(0).index(2), *self.col(1).index(2), *self.col(2).index(2))
}
2013-05-07 15:00:06 +00:00
#[inline(always)]
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3<T> {
unsafe { &'a mut transmute::<&'a mut Mat3<T>, &'a mut [Vec3<T>,..3]>(self)[i] }
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
2013-05-23 21:55:23 +00:00
*self.col_mut(b) = tmp;
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat3<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).add_self_v(other.col(0));
self.col_mut(1).add_self_v(other.col(1));
self.col_mut(2).add_self_v(other.col(2));
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).sub_self_v(other.col(0));
self.col_mut(1).sub_self_v(other.col(1));
self.col_mut(2).sub_self_v(other.col(2));
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
let tmp01 = *self.col(0).index(1);
let tmp02 = *self.col(0).index(2);
let tmp10 = *self.col(1).index(0);
let tmp12 = *self.col(1).index(2);
let tmp20 = *self.col(2).index(0);
let tmp21 = *self.col(2).index(1);
*self.col_mut(0).index_mut(1) = *self.col(1).index(0);
*self.col_mut(0).index_mut(2) = *self.col(2).index(0);
*self.col_mut(1).index_mut(0) = *self.col(0).index(1);
*self.col_mut(1).index_mut(2) = *self.col(2).index(1);
*self.col_mut(2).index_mut(0) = *self.col(0).index(2);
*self.col_mut(2).index_mut(1) = *self.col(1).index(2);
2013-05-23 21:55:23 +00:00
*self.col_mut(1).index_mut(0) = tmp01;
*self.col_mut(2).index_mut(0) = tmp02;
*self.col_mut(0).index_mut(1) = tmp10;
*self.col_mut(2).index_mut(1) = tmp12;
*self.col_mut(0).index_mut(2) = tmp20;
*self.col_mut(1).index_mut(2) = tmp21;
}
#[inline(always)]
fn is_identity(&self) -> bool {
2013-05-07 15:00:06 +00:00
self.approx_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self.col(0).index(1).approx_eq(&Zero::zero()) &&
self.col(0).index(2).approx_eq(&Zero::zero()) &&
self.col(1).index(0).approx_eq(&Zero::zero()) &&
self.col(1).index(2).approx_eq(&Zero::zero()) &&
self.col(2).index(0).approx_eq(&Zero::zero()) &&
self.col(2).index(1).approx_eq(&Zero::zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
2013-05-07 15:00:06 +00:00
!self.approx_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self.col(0).index(1).approx_eq(self.col(1).index(0)) &&
self.col(0).index(2).approx_eq(self.col(2).index(0)) &&
self.col(1).index(0).approx_eq(self.col(0).index(1)) &&
self.col(1).index(2).approx_eq(self.col(2).index(1)) &&
self.col(2).index(0).approx_eq(self.col(0).index(2)) &&
self.col(2).index(1).approx_eq(self.col(1).index(2))
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
2013-05-22 07:01:52 +00:00
unsafe { transmute(self) }
}
}
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> BaseMat3<T, Vec3<T>> for Mat3<T> {
/**
* Construct a 3 x 3 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0r0 | c1r0 | c2r0 |
* +------+------+------+
* r1 | c0r1 | c1r1 | c2r1 |
* +------+------+------+
* r2 | c0r2 | c1r2 | c2r2 |
* +------+------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0:T, c0r1:T, c0r2:T,
2013-04-02 04:01:38 +00:00
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(BaseVec3::new::<T,Vec3<T>>(c0r0, c0r1, c0r2),
BaseVec3::new::<T,Vec3<T>>(c1r0, c1r1, c1r2),
BaseVec3::new::<T,Vec3<T>>(c2r0, c2r1, c2r2))
}
/**
* Construct a 3 x 3 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0.x | c1.x | c2.x |
* +------+------+------+
* r1 | c0.y | c1.y | c2.y |
* +------+------+------+
* r2 | c0.z | c1.z | c2.z |
* +------+------+------+
* ~~~
*/
#[inline(always)]
2013-04-02 04:01:38 +00:00
fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: c0, y: c1, z: c2 }
}
/**
* Construct a matrix from an angular rotation around the `x` axis
*/
#[inline(always)]
fn from_angle_x(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
let sin_theta = radians.sin();
BaseMat3::new( One::one(), Zero::zero(), Zero::zero(),
Zero::zero(), cos_theta, sin_theta,
Zero::zero(), -sin_theta, cos_theta)
}
/**
* Construct a matrix from an angular rotation around the `y` axis
*/
#[inline(always)]
fn from_angle_y(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
let sin_theta = radians.sin();
BaseMat3::new( cos_theta, Zero::zero(), -sin_theta,
Zero::zero(), One::one(), Zero::zero(),
sin_theta, Zero::zero(), cos_theta)
}
/**
* Construct a matrix from an angular rotation around the `z` axis
*/
#[inline(always)]
fn from_angle_z(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
let sin_theta = radians.sin();
BaseMat3::new( cos_theta, sin_theta, Zero::zero(),
-sin_theta, cos_theta, Zero::zero(),
Zero::zero(), Zero::zero(), One::one())
}
/**
* Construct a matrix from Euler angles
*
* # Arguments
*
* * `theta_x` - the angular rotation around the `x` axis (pitch)
* * `theta_y` - the angular rotation around the `y` axis (yaw)
* * `theta_z` - the angular rotation around the `z` axis (roll)
*/
#[inline(always)]
fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let cx = radians_x.cos();
let sx = radians_x.sin();
let cy = radians_y.cos();
let sy = radians_y.sin();
let cz = radians_z.cos();
let sz = radians_z.sin();
2013-04-02 05:12:13 +00:00
BaseMat3::new( cy*cz, cy*sz, -sy,
-cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy,
sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy)
}
/**
* Construct a matrix from an axis and an angular rotation
*/
#[inline(always)]
fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Mat3<T> {
let c = radians.cos();
let s = radians.sin();
let _1_c = One::one::<T>() - c;
let x = axis.x;
let y = axis.y;
let z = axis.z;
2013-04-02 05:12:13 +00:00
BaseMat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y,
_1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x,
_1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c)
}
#[inline(always)]
fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(x, y, z)
}
#[inline(always)]
fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Mat3<T> {
let dir_ = dir.normalize();
let side = dir_.cross(&up.normalize());
let up_ = side.cross(&dir_).normalize();
2013-04-02 05:12:13 +00:00
BaseMat3::from_axes(up_, side, dir_)
}
/**
* Returns the the matrix with an extra row and column added
* ~~~
* c0 c1 c2 c0 c1 c2 c3
* +----+----+----+ +----+----+----+----+
* r0 | a | b | c | r0 | a | b | c | 0 |
* +----+----+----+ +----+----+----+----+
* r1 | d | e | f | => r1 | d | e | f | 0 |
* +----+----+----+ +----+----+----+----+
* r2 | g | h | i | r2 | g | h | i | 0 |
* +----+----+----+ +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat4(&self) -> Mat4<T> {
BaseMat4::new(*self.col(0).index(0), *self.col(0).index(1), *self.col(0).index(2), Zero::zero(),
*self.col(1).index(0), *self.col(1).index(1), *self.col(1).index(2), Zero::zero(),
*self.col(2).index(0), *self.col(2).index(1), *self.col(2).index(2), Zero::zero(),
Zero::zero(), Zero::zero(), Zero::zero(), One::one())
}
/**
* Convert the matrix to a quaternion
*/
#[inline(always)]
fn to_quat(&self) -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
let mut s;
let w, x, y, z;
let trace = self.trace();
let _1: T = num::cast(1.0);
let half: T = num::cast(0.5);
cond! (
(trace >= Zero::zero()) {
s = (_1 + trace).sqrt();
w = half * s;
s = half / s;
x = (*self.col(1).index(2) - *self.col(2).index(1)) * s;
y = (*self.col(2).index(0) - *self.col(0).index(2)) * s;
z = (*self.col(0).index(1) - *self.col(1).index(0)) * s;
}
((*self.col(0).index(0) > *self.col(1).index(1))
&& (*self.col(0).index(0) > *self.col(2).index(2))) {
s = (half + (*self.col(0).index(0) -
*self.col(1).index(1) -
*self.col(2).index(2))).sqrt();
w = half * s;
s = half / s;
x = (*self.col(0).index(1) - *self.col(1).index(0)) * s;
y = (*self.col(2).index(0) - *self.col(0).index(2)) * s;
z = (*self.col(1).index(2) - *self.col(2).index(1)) * s;
}
(*self.col(1).index(1) > *self.col(2).index(2)) {
s = (half + (*self.col(1).index(1) -
*self.col(0).index(0) -
*self.col(2).index(2))).sqrt();
w = half * s;
s = half / s;
x = (*self.col(0).index(1) - *self.col(1).index(0)) * s;
y = (*self.col(1).index(2) - *self.col(2).index(1)) * s;
z = (*self.col(2).index(0) - *self.col(0).index(2)) * s;
}
_ {
s = (half + (*self.col(2).index(2) -
*self.col(0).index(0) -
*self.col(1).index(1))).sqrt();
w = half * s;
s = half / s;
x = (*self.col(2).index(0) - *self.col(0).index(2)) * s;
y = (*self.col(1).index(2) - *self.col(2).index(1)) * s;
z = (*self.col(0).index(1) - *self.col(1).index(0)) * s;
}
)
Quat::new(w, x, y, z)
}
}
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> Neg<Mat3<T>> for Mat3<T> {
#[inline(always)]
fn neg(&self) -> Mat3<T> {
BaseMat3::from_cols(-self.col(0), -self.col(1), -self.col(2))
}
}
impl<T:Copy + Float + NumAssign> ApproxEq<T> for Mat3<T> {
#[inline(always)]
2013-05-07 15:00:06 +00:00
fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
2013-05-07 15:00:06 +00:00
fn approx_eq(&self, other: &Mat3<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
fn approx_eq_eps(&self, other: &Mat3<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon) &&
self.col(2).approx_eq_eps(other.col(2), epsilon)
}
}
/**
* A 4 x 4 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
* * `w` - the fourth column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> BaseMat<T, Vec4<T>> for Mat4<T> {
#[inline(always)]
fn col<'a>(&'a self, i: uint) -> &'a Vec4<T> {
unsafe { &'a transmute::<&'a Mat4<T>, &'a [Vec4<T>,..4]>(self)[i] }
}
#[inline(always)]
fn row(&self, i: uint) -> Vec4<T> {
BaseVec4::new(*self.col(0).index(i),
*self.col(1).index(i),
*self.col(2).index(i),
*self.col(3).index(i))
}
/**
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2 c3
* +-----+-----+-----+-----+
* r0 | val | 0 | 0 | 0 |
* +-----+-----+-----+-----+
* r1 | 0 | val | 0 | 0 |
* +-----+-----+-----+-----+
* r2 | 0 | 0 | val | 0 |
* +-----+-----+-----+-----+
* r3 | 0 | 0 | 0 | val |
* +-----+-----+-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat4<T> {
BaseMat4::new(value, Zero::zero(), Zero::zero(), Zero::zero(),
Zero::zero(), value, Zero::zero(), Zero::zero(),
Zero::zero(), Zero::zero(), value, Zero::zero(),
Zero::zero(), Zero::zero(), Zero::zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 1 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 1 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat4<T> {
BaseMat4::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat4<T> {
BaseMat4::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat4<T> {
BaseMat4::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value),
self.col(2).mul_t(value),
self.col(3).mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
2013-04-02 05:12:13 +00:00
BaseVec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
BaseMat4::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)),
self.col(2).add_v(other.col(2)),
self.col(3).add_v(other.col(3)))
}
#[inline(always)]
fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
BaseMat4::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)),
self.col(2).sub_v(other.col(2)),
self.col(3).sub_v(other.col(3)))
}
#[inline(always)]
fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
BaseMat4::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
self.row(2).dot(other.col(0)),
self.row(3).dot(other.col(0)),
self.row(0).dot(other.col(1)),
self.row(1).dot(other.col(1)),
self.row(2).dot(other.col(1)),
self.row(3).dot(other.col(1)),
self.row(0).dot(other.col(2)),
self.row(1).dot(other.col(2)),
self.row(2).dot(other.col(2)),
self.row(3).dot(other.col(2)),
self.row(0).dot(other.col(3)),
self.row(1).dot(other.col(3)),
self.row(2).dot(other.col(3)),
self.row(3).dot(other.col(3)))
}
fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
let m0: Mat3<T> = BaseMat3::new(*self.col(1).index(1), *self.col(2).index(1), *self.col(3).index(1),
*self.col(1).index(2), *self.col(2).index(2), *self.col(3).index(2),
*self.col(1).index(3), *self.col(2).index(3), *self.col(3).index(3));
let m1: Mat3<T> = BaseMat3::new(*self.col(0).index(1), *self.col(2).index(1), *self.col(3).index(1),
*self.col(0).index(2), *self.col(2).index(2), *self.col(3).index(2),
*self.col(0).index(3), *self.col(2).index(3), *self.col(3).index(3));
let m2: Mat3<T> = BaseMat3::new(*self.col(0).index(1), *self.col(1).index(1), *self.col(3).index(1),
*self.col(0).index(2), *self.col(1).index(2), *self.col(3).index(2),
*self.col(0).index(3), *self.col(1).index(3), *self.col(3).index(3));
let m3: Mat3<T> = BaseMat3::new(*self.col(0).index(1), *self.col(1).index(1), *self.col(2).index(1),
*self.col(0).index(2), *self.col(1).index(2), *self.col(2).index(2),
*self.col(0).index(3), *self.col(1).index(3), *self.col(2).index(3));
self.col(0).index(0) * m0.determinant() -
self.col(1).index(0) * m1.determinant() +
self.col(2).index(0) * m2.determinant() -
self.col(3).index(0) * m3.determinant()
}
fn trace(&self) -> T {
*self.col(0).index(0) +
*self.col(1).index(1) +
*self.col(2).index(2) +
*self.col(3).index(3)
}
fn inverse(&self) -> Option<Mat4<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
None
} else {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = *self;
2013-04-02 05:12:13 +00:00
let mut I: Mat4<T> = BaseMat::identity();
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if A.col(j).index(i).abs() > A.col(j).index(i1).abs() {
i1 = i;
}
}
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
// Scale col j to have a unit diagonal
let ajj = *A.col(j).index(j);
2013-05-23 21:55:23 +00:00
I.col_mut(j).div_self_t(ajj);
A.col_mut(j).div_self_t(ajj);
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
let ij_mul_aij = I.col(j).mul_t(*A.col(i).index(j));
let aj_mul_aij = A.col(j).mul_t(*A.col(i).index(j));
2013-05-23 21:55:23 +00:00
I.col_mut(i).sub_self_v(&ij_mul_aij);
A.col_mut(i).sub_self_v(&aj_mul_aij);
}
}
}
Some(I)
}
}
#[inline(always)]
fn transpose(&self) -> Mat4<T> {
BaseMat4::new(*self.col(0).index(0), *self.col(1).index(0), *self.col(2).index(0), *self.col(3).index(0),
*self.col(0).index(1), *self.col(1).index(1), *self.col(2).index(1), *self.col(3).index(1),
*self.col(0).index(2), *self.col(1).index(2), *self.col(2).index(2), *self.col(3).index(2),
*self.col(0).index(3), *self.col(1).index(3), *self.col(2).index(3), *self.col(3).index(3))
}
2013-05-07 15:00:06 +00:00
#[inline(always)]
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4<T> {
unsafe { &'a mut transmute::<&'a mut Mat4<T>, &'a mut [Vec4<T>,..4]>(self)[i] }
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
2013-05-23 21:55:23 +00:00
*self.col_mut(b) = tmp;
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
self.w.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat4<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
self.col_mut(3).mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(other.col(0));
self.col_mut(1).add_self_v(other.col(1));
self.col_mut(2).add_self_v(other.col(2));
self.col_mut(3).add_self_v(other.col(3));
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(other.col(0));
self.col_mut(1).sub_self_v(other.col(1));
self.col_mut(2).sub_self_v(other.col(2));
self.col_mut(3).sub_self_v(other.col(3));
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
let tmp01 = *self.col(0).index(1);
let tmp02 = *self.col(0).index(2);
let tmp03 = *self.col(0).index(3);
let tmp10 = *self.col(1).index(0);
let tmp12 = *self.col(1).index(2);
let tmp13 = *self.col(1).index(3);
let tmp20 = *self.col(2).index(0);
let tmp21 = *self.col(2).index(1);
let tmp23 = *self.col(2).index(3);
let tmp30 = *self.col(3).index(0);
let tmp31 = *self.col(3).index(1);
let tmp32 = *self.col(3).index(2);
*self.col_mut(0).index_mut(1) = *self.col(1).index(0);
*self.col_mut(0).index_mut(2) = *self.col(2).index(0);
*self.col_mut(0).index_mut(3) = *self.col(3).index(0);
*self.col_mut(1).index_mut(0) = *self.col(0).index(1);
*self.col_mut(1).index_mut(2) = *self.col(2).index(1);
*self.col_mut(1).index_mut(3) = *self.col(3).index(1);
*self.col_mut(2).index_mut(0) = *self.col(0).index(2);
*self.col_mut(2).index_mut(1) = *self.col(1).index(2);
*self.col_mut(2).index_mut(3) = *self.col(3).index(2);
*self.col_mut(3).index_mut(0) = *self.col(0).index(3);
*self.col_mut(3).index_mut(1) = *self.col(1).index(3);
*self.col_mut(3).index_mut(2) = *self.col(2).index(3);
2013-05-23 21:55:23 +00:00
*self.col_mut(1).index_mut(0) = tmp01;
*self.col_mut(2).index_mut(0) = tmp02;
*self.col_mut(3).index_mut(0) = tmp03;
*self.col_mut(0).index_mut(1) = tmp10;
*self.col_mut(2).index_mut(1) = tmp12;
*self.col_mut(3).index_mut(1) = tmp13;
*self.col_mut(0).index_mut(2) = tmp20;
*self.col_mut(1).index_mut(2) = tmp21;
*self.col_mut(3).index_mut(2) = tmp23;
*self.col_mut(0).index_mut(3) = tmp30;
*self.col_mut(1).index_mut(3) = tmp31;
*self.col_mut(2).index_mut(3) = tmp32;
}
#[inline(always)]
fn is_identity(&self) -> bool {
2013-05-07 15:00:06 +00:00
self.approx_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self.col(0).index(1).approx_eq(&Zero::zero()) &&
self.col(0).index(2).approx_eq(&Zero::zero()) &&
self.col(0).index(3).approx_eq(&Zero::zero()) &&
self.col(1).index(0).approx_eq(&Zero::zero()) &&
self.col(1).index(2).approx_eq(&Zero::zero()) &&
self.col(1).index(3).approx_eq(&Zero::zero()) &&
self.col(2).index(0).approx_eq(&Zero::zero()) &&
self.col(2).index(1).approx_eq(&Zero::zero()) &&
self.col(2).index(3).approx_eq(&Zero::zero()) &&
self.col(3).index(0).approx_eq(&Zero::zero()) &&
self.col(3).index(1).approx_eq(&Zero::zero()) &&
self.col(3).index(2).approx_eq(&Zero::zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
2013-05-07 15:00:06 +00:00
!self.approx_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self.col(0).index(1).approx_eq(self.col(1).index(0)) &&
self.col(0).index(2).approx_eq(self.col(2).index(0)) &&
self.col(0).index(3).approx_eq(self.col(3).index(0)) &&
self.col(1).index(0).approx_eq(self.col(0).index(1)) &&
self.col(1).index(2).approx_eq(self.col(2).index(1)) &&
self.col(1).index(3).approx_eq(self.col(3).index(1)) &&
self.col(2).index(0).approx_eq(self.col(0).index(2)) &&
self.col(2).index(1).approx_eq(self.col(1).index(2)) &&
self.col(2).index(3).approx_eq(self.col(3).index(2)) &&
self.col(3).index(0).approx_eq(self.col(0).index(3)) &&
self.col(3).index(1).approx_eq(self.col(1).index(3)) &&
self.col(3).index(2).approx_eq(self.col(2).index(3))
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
2013-05-22 07:01:52 +00:00
unsafe { transmute(self) }
}
}
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> BaseMat4<T, Vec4<T>> for Mat4<T> {
/**
* Construct a 4 x 4 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix
* * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0r0 | c1r0 | c2r0 | c3r0 |
* +------+------+------+------+
* r1 | c0r1 | c1r1 | c2r1 | c3r1 |
* +------+------+------+------+
* r2 | c0r2 | c1r2 | c2r2 | c3r2 |
* +------+------+------+------+
* r3 | c0r3 | c1r3 | c2r3 | c3r3 |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::from_cols(BaseVec4::new::<T,Vec4<T>>(c0r0, c0r1, c0r2, c0r3),
BaseVec4::new::<T,Vec4<T>>(c1r0, c1r1, c1r2, c1r3),
BaseVec4::new::<T,Vec4<T>>(c2r0, c2r1, c2r2, c2r3),
BaseVec4::new::<T,Vec4<T>>(c3r0, c3r1, c3r2, c3r3))
}
/**
* Construct a 4 x 4 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
* * `c3` - the fourth column vector of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0.x | c1.x | c2.x | c3.x |
* +------+------+------+------+
* r1 | c0.y | c1.y | c2.y | c3.y |
* +------+------+------+------+
* r2 | c0.z | c1.z | c2.z | c3.z |
* +------+------+------+------+
* r3 | c0.w | c1.w | c2.w | c3.w |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
2013-04-02 04:01:38 +00:00
fn from_cols(c0: Vec4<T>, c1: Vec4<T>, c2: Vec4<T>, c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: c0, y: c1, z: c2, w: c3 }
}
}
2013-05-07 15:00:06 +00:00
impl<T:Copy + Float + NumAssign> Neg<Mat4<T>> for Mat4<T> {
#[inline(always)]
fn neg(&self) -> Mat4<T> {
BaseMat4::from_cols(-self.col(0), -self.col(1), -self.col(2), -self.col(3))
}
}
impl<T:Copy + Float + NumAssign> ApproxEq<T> for Mat4<T> {
2013-05-07 15:00:06 +00:00
#[inline(always)]
fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
2013-05-07 15:00:06 +00:00
fn approx_eq(&self, other: &Mat4<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
2013-05-07 15:00:06 +00:00
fn approx_eq_eps(&self, other: &Mat4<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon) &&
self.col(2).approx_eq_eps(other.col(2), epsilon) &&
self.col(3).approx_eq_eps(other.col(3), epsilon)
}
}