rFactor2_vk_hud/src/overlay/rfactor_data.rs

446 lines
14 KiB
Rust

use anyhow::Result;
use cgmath::{ortho, vec2, vec3, vec4, Deg, InnerSpace, Matrix4, Rad, Vector2, Vector3};
use rfactor_sm_reader::*;
use vulkan_rs::prelude::*;
use serde::{Deserialize, Serialize};
use std::{sync::Arc, time::Instant};
use super::rendering::PositionOnlyVertex;
use crate::write_log;
fn convert_vec(v: rF2Vec3) -> Vector3<f32> {
vec3(v.x as f32, v.y as f32, v.z as f32)
}
pub trait RenderObject {
fn descriptor(&self) -> &Arc<DescriptorSet>;
fn buffer(&self) -> &Arc<Buffer<PositionOnlyVertex>>;
}
#[derive(Deserialize, Serialize, Clone, Copy, Debug)]
pub struct DataConfig {
pub radar_scale: f32,
pub radar_center_factor: f32,
pub radar_transparency: f32,
pub height_scale: f32,
pub width_scale: f32,
pub radar_car_distance: f32,
pub safe_color: Vector3<f32>,
pub danger_color: Vector3<f32>,
}
impl DataConfig {
pub const fn new() -> Self {
Self {
radar_scale: 1.0,
radar_center_factor: 0.25,
radar_transparency: 0.5,
height_scale: 0.15,
width_scale: 0.4,
radar_car_distance: 20.0,
safe_color: vec3(0.0, 0.75, 0.0),
danger_color: vec3(0.75, 0.0, 0.0),
}
}
}
pub struct RFactorData {
// config
config: DataConfig,
// rf2 memory mapped data
telemetry_reader: TelemetryReader,
scoring_reader: ScoringReader,
// radar objects
background: Option<RadarObject>,
player_car: RadarObject,
cars: Vec<RadarObject>,
// buffer car objects, to prevent recreating them every update
car_handles: Vec<RadarObject>,
// game info
player_id: Option<i32>,
// math objects
radar_center: Vector2<f32>,
ortho: Matrix4<f32>,
_window_width: u32,
_window_height: u32,
radar_extent: f32,
car_width: f32,
car_height: f32,
start_time: Instant,
device: Arc<Device>,
descriptor_layout: Arc<DescriptorSetLayout>,
}
impl RFactorData {
pub fn new(
config: DataConfig,
device: Arc<Device>,
descriptor_layout: &Arc<DescriptorSetLayout>,
width: u32,
height: u32,
) -> Result<Self> {
write_log!(" =================== create RFactorData ===================");
let radar_extent = width as f32 * 0.075 * config.radar_scale;
let car_height = radar_extent * config.height_scale;
let car_width = car_height * config.width_scale;
let radar_center = vec2(
width as f32 / 2.0,
height as f32 / 2.0 - height as f32 * config.radar_center_factor,
);
let flip_y = matrix4_from_diagonal(vec3(1.0, -1.0, 1.0));
let ortho = flip_y * ortho(0.0, width as f32, 0.0, height as f32, -1.0, 1.0);
let start_time = Instant::now();
Ok(Self {
config,
telemetry_reader: TelemetryReader::new(start_time.elapsed().as_secs_f32())?,
scoring_reader: ScoringReader::new(start_time.elapsed().as_secs_f32())?,
background: if config.radar_transparency == 0.0 {
None
} else {
Some(RadarObject::new(
device.clone(),
descriptor_layout,
PositionOnlyVertex::from_2d_corners(
ortho * Matrix4::from_translation(radar_center.extend(0.0)),
[
vec2(-radar_extent, -radar_extent),
vec2(-radar_extent, radar_extent),
vec2(radar_extent, radar_extent),
vec2(radar_extent, -radar_extent),
],
),
[0.5, 0.5, 0.5, config.radar_transparency],
)?)
},
player_car: RadarObject::new(
device.clone(),
descriptor_layout,
PositionOnlyVertex::from_2d_corners(
ortho * Matrix4::from_translation(radar_center.extend(0.0)),
[
vec2(-car_width, -car_height),
vec2(-car_width, car_height),
vec2(car_width, car_height),
vec2(car_width, -car_height),
],
),
[0.0, 0.9, 0.0, 0.9],
)?,
cars: Vec::new(),
car_handles: Vec::new(),
player_id: None,
radar_center,
ortho,
_window_width: width,
_window_height: height,
radar_extent,
car_width,
car_height,
start_time,
device,
descriptor_layout: descriptor_layout.clone(),
})
}
fn create_car_object(&self, offset: Vector2<f32>, color: [f32; 4]) -> Result<RadarObject> {
write_log!(" =================== create car object ===================");
RadarObject::new(
self.device.clone(),
&self.descriptor_layout,
Self::create_car_vertices(
self.ortho
* Matrix4::from_translation(self.radar_center.extend(0.0))
* Matrix4::from_translation(offset.extend(0.0)),
self.car_width,
self.car_height,
),
color,
)
}
fn create_car_vertices(
mvp: Matrix4<f32>,
car_width: f32,
car_height: f32,
) -> [PositionOnlyVertex; 6] {
PositionOnlyVertex::from_2d_corners(
mvp,
[
vec2(-car_width, -car_height),
vec2(-car_width, car_height),
vec2(car_width, car_height),
vec2(car_width, -car_height),
],
)
}
fn now(&self) -> f32 {
self.start_time.elapsed().as_secs_f32()
}
pub fn update(&mut self) -> Result<()> {
write_log!(" =================== update RFactorData ===================");
let mut should_render = false;
// get scoring info
if let Some((scoring_info, vehicle_scorings)) =
self.scoring_reader.vehicle_scoring(self.now())
{
write_log!(format!(
"new scoring info: vehicles: {}",
scoring_info.mNumVehicles
));
// check for player id
if scoring_info.mNumVehicles == 0 {
self.player_id = None;
} else if self.player_id.is_none() {
for vehicle_scoring in vehicle_scorings.iter() {
if vehicle_scoring.mIsPlayer != 0 {
write_log!(format!("player found: {}", vehicle_scoring.mID));
self.player_id = Some(vehicle_scoring.mID);
break;
}
}
}
if let Some(id) = &self.player_id {
if let Some(vehicle_scoring) =
vehicle_scorings.iter().find(|scoring| scoring.mID == *id)
{
should_render = vehicle_scoring.mInPits != 0;
}
}
}
// if player id is set (a map is loaded), check telemetry data
if let Some(player_id) = &self.player_id {
write_log!("before telemetry update");
if let Some(telemetries) = self.telemetry_reader.query_telemetry(self.now()) {
write_log!("new telemetry update");
self.cars.clear();
if should_render {
// make sure there are enough cars in buffer
if self.car_handles.len() < telemetries.len() {
let size_diff = telemetries.len() - self.car_handles.len();
for _ in 0..size_diff {
self.car_handles.push(
self.create_car_object(vec2(0.0, 0.0), [0.0, 0.0, 0.0, 0.0])?,
);
}
}
let mut player_position = CarPosition::default();
let mut other_positions = Vec::new();
for telemetry in telemetries {
let car = CarPosition::new(
convert_vec(telemetry.position),
[
convert_vec(telemetry.orientation[0]),
convert_vec(telemetry.orientation[1]),
convert_vec(telemetry.orientation[2]),
],
);
if telemetry.id == *player_id {
player_position = car
} else {
other_positions.push(car);
}
}
// update radar objects
let mut buffer_car_index = 0;
for other_position in other_positions {
let diff = player_position.position - other_position.position;
let distance = diff.magnitude();
// check if car is close enough to the players car
if distance < self.config.radar_car_distance {
let offset =
diff.xz() * (self.radar_extent / self.config.radar_car_distance);
let buffered_car = self.car_handles[buffer_car_index].clone();
buffer_car_index += 1;
buffered_car.update(
self.ortho,
offset,
player_position.rotation,
other_position.rotation,
self.radar_center,
self.car_width,
self.car_height,
[0.9, 0.9, 0.0, 0.9],
)?;
self.cars.push(buffered_car);
}
}
}
}
}
Ok(())
}
pub fn objects(&self) -> Vec<&dyn RenderObject> {
write_log!(" =================== get objects of RFactorData ===================");
let mut objects: Vec<&dyn RenderObject> = Vec::new();
// only draw radar when player is loaded into a map
if let Some(_player_id) = &self.player_id {
// only draw radar when any car is near enough
if !self.cars.is_empty() {
if let Some(background) = &self.background {
objects.push(background);
}
for other_player_cars in &self.cars {
objects.push(other_player_cars);
}
objects.push(&self.player_car);
}
}
objects
}
}
#[derive(Clone)]
struct RadarObject {
descriptor_set: Arc<DescriptorSet>,
// uniform buffer
color_buffer: Arc<Buffer<f32>>,
// vertex buffer
position_buffer: Arc<Buffer<PositionOnlyVertex>>,
}
impl RadarObject {
fn new(
device: Arc<Device>,
descriptor_layout: &Arc<DescriptorSetLayout>,
positions: [PositionOnlyVertex; 6],
color: [f32; 4],
) -> Result<Self> {
let color_buffer = Buffer::builder()
.set_usage(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
.set_memory_usage(MemoryUsage::CpuOnly)
.set_data(&color)
.build(device.clone())?;
let position_buffer = Buffer::builder()
.set_usage(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT)
.set_memory_usage(MemoryUsage::CpuOnly)
.set_data(&positions)
.build(device.clone())?;
let descriptor_pool = DescriptorPool::builder()
.set_layout(descriptor_layout.clone())
.build(device.clone())?;
let descriptor_set = descriptor_pool.prepare_set().allocate()?;
descriptor_set.update(&[DescriptorWrite::uniform_buffers(0, &[&color_buffer])])?;
Ok(Self {
descriptor_set,
color_buffer,
position_buffer,
})
}
pub fn update(
&self,
ortho: Matrix4<f32>,
offset: Vector2<f32>,
player_rotation: impl Into<Deg<f32>>,
rotation: impl Into<Deg<f32>>,
radar_center: Vector2<f32>,
car_width: f32,
car_height: f32,
color: [f32; 4],
) -> Result<()> {
self.position_buffer
.fill(&RFactorData::create_car_vertices(
ortho
* Matrix4::from_translation(radar_center.extend(0.0))
* Matrix4::from_angle_z(-player_rotation.into())
* Matrix4::from_translation(offset.extend(0.0))
* Matrix4::from_angle_z(rotation.into()),
car_width,
car_height,
))?;
self.color_buffer.fill(&color)
}
}
impl RenderObject for RadarObject {
fn descriptor(&self) -> &Arc<DescriptorSet> {
&self.descriptor_set
}
fn buffer(&self) -> &Arc<Buffer<PositionOnlyVertex>> {
&self.position_buffer
}
}
struct CarPosition {
pub position: Vector3<f32>,
pub rotation: Rad<f32>,
}
impl CarPosition {
fn new(position: Vector3<f32>, orientation: [Vector3<f32>; 3]) -> Self {
Self {
position,
rotation: Rad(orientation[2].x.atan2(orientation[2].z)),
}
}
}
impl Default for CarPosition {
fn default() -> Self {
Self {
position: vec3(0.0, 0.0, 0.0),
rotation: Rad(0.0),
}
}
}
const fn matrix4_from_diagonal(diagonal: Vector3<f32>) -> Matrix4<f32> {
Matrix4::from_cols(
vec4(diagonal.x, 0.0, 0.0, 0.0),
vec4(0.0, diagonal.y, 0.0, 0.0),
vec4(0.0, 0.0, diagonal.z, 0.0),
vec4(0.0, 0.0, 0.0, 1.0),
)
}