cgmath/src/quaternion.rs

591 lines
18 KiB
Rust
Raw Normal View History

2014-05-26 17:10:04 +00:00
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
2015-03-14 02:49:46 +00:00
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::mem;
2015-01-03 21:29:26 +00:00
use std::ops::*;
2015-03-15 02:53:57 +00:00
use rand::{Rand, Rng};
use rust_num::{Float, One, Zero};
2015-04-25 03:28:31 +00:00
use rust_num::traits::cast;
2015-03-15 02:53:57 +00:00
use angle::{Angle, Rad};
use approx::ApproxEq;
2015-05-06 08:27:52 +00:00
use matrix::{Matrix3, Matrix4};
2015-04-05 01:19:11 +00:00
use num::BaseFloat;
use point::Point3;
use rotation::{Rotation, Rotation3, Basis3};
use vector::{Vector3, Vector, EuclideanVector};
2015-03-15 02:53:57 +00:00
2014-05-25 08:29:19 +00:00
/// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector
/// form.
2015-12-29 10:50:43 +00:00
#[derive(Copy, Clone, Debug, PartialEq, RustcEncodable, RustcDecodable)]
pub struct Quaternion<S> {
pub s: S,
pub v: Vector3<S>,
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Quaternion<S> {
/// Construct a new quaternion from one scalar component and three
/// imaginary components
#[inline]
pub fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion<S> {
Quaternion::from_sv(w, Vector3::new(xi, yj, zk))
}
2013-07-12 01:22:14 +00:00
/// Construct a new quaternion from a scalar and a vector
#[inline]
pub fn from_sv(s: S, v: Vector3<S>) -> Quaternion<S> {
Quaternion { s: s, v: v }
}
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
#[inline]
pub fn zero() -> Quaternion<S> {
Quaternion::new(S::zero(), S::zero(), S::zero(), S::zero())
}
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
#[inline]
pub fn one() -> Quaternion<S> {
Quaternion::from_sv(S::one(), Vector3::zero())
}
/// The dot product of the quaternion and `q`.
#[inline]
pub fn dot(self, other: Quaternion<S>) -> S {
self.s * other.s + self.v.dot(other.v)
}
2014-05-25 08:29:19 +00:00
/// The conjugate of the quaternion.
#[inline]
pub fn conjugate(self) -> Quaternion<S> {
Quaternion::from_sv(self.s, -self.v)
}
/// The squared magnitude of the quaternion. This is useful for
/// magnitude comparisons where the exact magnitude does not need to be
/// calculated.
#[inline]
pub fn magnitude2(self) -> S {
self.s * self.s + self.v.length2()
}
/// The magnitude of the quaternion
///
/// # Performance notes
///
/// For instances where the exact magnitude of the quaternion does not need
/// to be known, for example for quaternion-quaternion magnitude comparisons,
/// it is advisable to use the `magnitude2` method instead.
#[inline]
pub fn magnitude(self) -> S {
2014-04-02 09:24:04 +00:00
self.magnitude2().sqrt()
}
2014-05-25 08:29:19 +00:00
/// Normalize this quaternion, returning the new quaternion.
#[inline]
pub fn normalize(self) -> Quaternion<S> {
self * (S::one() / self.magnitude())
}
2014-05-25 08:29:19 +00:00
/// Do a normalized linear interpolation with `other`, by `amount`.
pub fn nlerp(self, other: Quaternion<S>, amount: S) -> Quaternion<S> {
(self * (S::one() - amount) + other * amount).normalize()
}
}
impl_operator!(<S: BaseFloat> Neg for Quaternion<S> {
fn neg(quat) -> Quaternion<S> {
Quaternion::from_sv(-quat.s, -quat.v)
}
});
impl_operator!(<S: BaseFloat> Mul<S> for Quaternion<S> {
fn mul(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs)
}
});
2015-12-20 20:24:56 +00:00
impl_assignment_operator!(<S: BaseFloat> MulAssign<S> for Quaternion<S> {
fn mul_assign(&mut self, scalar) { self.s *= scalar; self.v *= scalar; }
});
impl_operator!(<S: BaseFloat> Div<S> for Quaternion<S> {
fn div(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs)
}
});
2015-12-20 20:24:56 +00:00
impl_assignment_operator!(<S: BaseFloat> DivAssign<S> for Quaternion<S> {
fn div_assign(&mut self, scalar) { self.s /= scalar; self.v /= scalar; }
});
impl_operator!(<S: BaseFloat> Mul<Vector3<S> > for Quaternion<S> {
fn mul(lhs, rhs) -> Vector3<S> {{
let rhs = rhs.clone();
let two: S = cast(2i8).unwrap();
let tmp = lhs.v.cross(rhs) + (rhs * lhs.s);
(lhs.v.cross(tmp) * two) + rhs
}}
});
impl_operator!(<S: BaseFloat> Add<Quaternion<S> > for Quaternion<S> {
fn add(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v)
}
});
2015-12-20 20:24:56 +00:00
impl_assignment_operator!(<S: BaseFloat> AddAssign<Quaternion<S> > for Quaternion<S> {
fn add_assign(&mut self, other) { self.s += other.s; self.v += other.v; }
});
impl_operator!(<S: BaseFloat> Sub<Quaternion<S> > for Quaternion<S> {
fn sub(lhs, rhs) -> Quaternion<S> {
Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v)
}
});
2015-12-20 20:24:56 +00:00
impl_assignment_operator!(<S: BaseFloat> SubAssign<Quaternion<S> > for Quaternion<S> {
fn sub_assign(&mut self, other) { self.s -= other.s; self.v -= other.v; }
});
impl_operator!(<S: BaseFloat> Mul<Quaternion<S> > for Quaternion<S> {
fn mul(lhs, rhs) -> Quaternion<S> {
Quaternion::new(lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z,
lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y,
lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z,
lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x)
}
});
macro_rules! impl_scalar_mul {
($S:ident) => {
impl_operator!(Mul<Quaternion<$S>> for $S {
fn mul(scalar, quat) -> Quaternion<$S> {
Quaternion::from_sv(scalar * quat.s, scalar * quat.v)
}
});
};
}
macro_rules! impl_scalar_div {
($S:ident) => {
impl_operator!(Div<Quaternion<$S>> for $S {
fn div(scalar, quat) -> Quaternion<$S> {
Quaternion::from_sv(scalar / quat.s, scalar / quat.v)
}
});
};
}
impl_scalar_mul!(f32);
impl_scalar_mul!(f64);
impl_scalar_div!(f32);
impl_scalar_div!(f64);
impl<S: BaseFloat> ApproxEq for Quaternion<S> {
type Epsilon = S;
#[inline]
fn approx_eq_eps(&self, other: &Quaternion<S>, epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, epsilon) &&
self.v.approx_eq_eps(&other.v, epsilon)
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Quaternion<S> {
/// Spherical Linear Intoperlation
///
2014-05-25 08:29:19 +00:00
/// Return the spherical linear interpolation between the quaternion and
/// `other`. Both quaternions should be normalized first.
///
/// # Performance notes
///
2014-05-25 08:29:19 +00:00
/// The `acos` operation used in `slerp` is an expensive operation, so
/// unless your quarternions are far away from each other it's generally
/// more advisable to use `nlerp` when you know your rotations are going
/// to be small.
///
/// - [Understanding Slerp, Then Not Using It]
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial]
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
pub fn slerp(self, other: Quaternion<S>, amount: S) -> Quaternion<S> {
let dot = self.dot(other);
2014-06-26 04:26:15 +00:00
let dot_threshold = cast(0.9995f64).unwrap();
// if quaternions are close together use `nlerp`
if dot > dot_threshold {
self.nlerp(other, amount)
} else {
// stay within the domain of acos()
// TODO REMOVE WHEN https://github.com/mozilla/rust/issues/12068 IS RESOLVED
let robust_dot = if dot > S::one() {
S::one()
} else if dot < -S::one() {
-S::one()
} else {
dot
};
let theta = Rad::acos(robust_dot.clone());
let scale1 = Rad::sin(theta * (S::one() - amount));
let scale2 = Rad::sin(theta * amount);
(self * scale1 + other * scale2) * Rad::sin(theta).recip()
}
}
/// Convert a Quaternion to Eular angles
/// This is a polar singularity aware conversion
///
/// Based on:
/// - [Maths - Conversion Quaternion to Euler]
/// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/)
pub fn to_euler(self) -> (Rad<S>, Rad<S>, Rad<S>) {
let sig: S = cast(0.499f64).unwrap();
let two: S = cast(2f64).unwrap();
let one: S = cast(1f64).unwrap();
let (qw, qx, qy, qz) = (self.s, self.v.x, self.v.y, self.v.z);
let (sqw, sqx, sqy, sqz) = (qw * qw, qx * qx, qy * qy, qz * qz);
let unit = sqx + sqy + sqz + sqw;
let test = qx * qy + qz * qw;
if test > sig * unit {
(
Rad::zero(),
Rad::turn_div_4(),
Rad::atan2(qx, qw) * two,
)
} else if test < -sig * unit {
(
Rad::zero(),
-Rad::turn_div_4(),
Rad::atan2(qx, qw) * two,
)
} else {
(
Rad::atan2(two * (qy * qw - qx * qz), one - two * (sqy + sqz)),
Rad::asin(two * (qx * qy + qz * qw)),
Rad::atan2(two * (qx * qw - qy * qz), one - two * (sqx + sqz)),
)
}
}
}
2015-05-06 08:27:52 +00:00
impl<S: BaseFloat> From<Quaternion<S>> for Matrix3<S> {
/// Convert the quaternion to a 3 x 3 rotation matrix
2015-05-06 08:27:52 +00:00
fn from(quat: Quaternion<S>) -> Matrix3<S> {
let x2 = quat.v.x + quat.v.x;
let y2 = quat.v.y + quat.v.y;
let z2 = quat.v.z + quat.v.z;
2015-05-06 08:27:52 +00:00
let xx2 = x2 * quat.v.x;
let xy2 = x2 * quat.v.y;
let xz2 = x2 * quat.v.z;
2015-05-06 08:27:52 +00:00
let yy2 = y2 * quat.v.y;
let yz2 = y2 * quat.v.z;
let zz2 = z2 * quat.v.z;
2015-05-06 08:27:52 +00:00
let sy2 = y2 * quat.s;
let sz2 = z2 * quat.s;
let sx2 = x2 * quat.s;
Matrix3::new(S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2,
xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2)
}
}
2015-05-06 08:27:52 +00:00
impl<S: BaseFloat> From<Quaternion<S>> for Matrix4<S> {
/// Convert the quaternion to a 4 x 4 rotation matrix
2015-05-06 08:27:52 +00:00
fn from(quat: Quaternion<S>) -> Matrix4<S> {
let x2 = quat.v.x + quat.v.x;
let y2 = quat.v.y + quat.v.y;
let z2 = quat.v.z + quat.v.z;
let xx2 = x2 * quat.v.x;
let xy2 = x2 * quat.v.y;
let xz2 = x2 * quat.v.z;
let yy2 = y2 * quat.v.y;
let yz2 = y2 * quat.v.z;
let zz2 = z2 * quat.v.z;
let sy2 = y2 * quat.s;
let sz2 = z2 * quat.s;
let sx2 = x2 * quat.s;
Matrix4::new(S::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2, S::zero(),
xy2 - sz2, S::one() - xx2 - zz2, yz2 + sx2, S::zero(),
xz2 + sy2, yz2 - sx2, S::one() - xx2 - yy2, S::zero(),
S::zero(), S::zero(), S::zero(), S::one())
}
}
// Quaternion Rotation impls
impl<S: BaseFloat> From<Quaternion<S>> for Basis3<S> {
#[inline]
fn from(quat: Quaternion<S>) -> Basis3<S> { Basis3::from_quaternion(&quat) }
}
impl<S: BaseFloat> Rotation<Point3<S>> for Quaternion<S> {
#[inline]
fn one() -> Quaternion<S> { Quaternion::one() }
#[inline]
fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Quaternion<S> {
2015-05-06 08:38:15 +00:00
Matrix3::look_at(dir, up).into()
}
#[inline]
fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Quaternion<S> {
//http://stackoverflow.com/questions/1171849/
//finding-quaternion-representing-the-rotation-from-one-vector-to-another
Quaternion::from_sv(S::one() + a.dot(b), a.cross(b)).normalize()
}
#[inline]
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> { self * vec }
#[inline]
fn concat(&self, other: &Quaternion<S>) -> Quaternion<S> { self * other }
#[inline]
fn concat_self(&mut self, other: &Quaternion<S>) { *self = &*self * other; }
#[inline]
fn invert(&self) -> Quaternion<S> { self.conjugate() / self.magnitude2() }
#[inline]
fn invert_self(&mut self) { *self = self.invert() }
}
impl<S: BaseFloat> Rotation3<S> for Quaternion<S> {
#[inline]
fn from_axis_angle(axis: Vector3<S>, angle: Rad<S>) -> Quaternion<S> {
let (s, c) = Rad::sin_cos(angle * cast(0.5f64).unwrap());
Quaternion::from_sv(c, axis * s)
}
/// - [Maths - Conversion Euler to Quaternion]
/// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm)
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Quaternion<S> {
let (s1, c1) = Rad::sin_cos(x * cast(0.5f64).unwrap());
let (s2, c2) = Rad::sin_cos(y * cast(0.5f64).unwrap());
let (s3, c3) = Rad::sin_cos(z * cast(0.5f64).unwrap());
Quaternion::new(c1 * c2 * c3 - s1 * s2 * s3,
s1 * s2 * c3 + c1 * c2 * s3,
s1 * c2 * c3 + c1 * s2 * s3,
c1 * s2 * c3 - s1 * c2 * s3)
}
}
2015-03-15 02:53:57 +00:00
impl<S: BaseFloat> Into<[S; 4]> for Quaternion<S> {
#[inline]
fn into(self) -> [S; 4] {
match self.into() { (w, xi, yj, zk) => [w, xi, yj, zk] }
}
}
impl<S: BaseFloat> AsRef<[S; 4]> for Quaternion<S> {
#[inline]
fn as_ref(&self) -> &[S; 4] {
unsafe { mem::transmute(self) }
}
}
impl<S: BaseFloat> AsMut<[S; 4]> for Quaternion<S> {
#[inline]
fn as_mut(&mut self) -> &mut [S; 4] {
unsafe { mem::transmute(self) }
}
}
impl<S: BaseFloat> From<[S; 4]> for Quaternion<S> {
#[inline]
fn from(v: [S; 4]) -> Quaternion<S> {
Quaternion::new(v[0], v[1], v[2], v[3])
}
}
impl<'a, S: BaseFloat> From<&'a [S; 4]> for &'a Quaternion<S> {
#[inline]
fn from(v: &'a [S; 4]) -> &'a Quaternion<S> {
unsafe { mem::transmute(v) }
}
}
impl<'a, S: BaseFloat> From<&'a mut [S; 4]> for &'a mut Quaternion<S> {
#[inline]
fn from(v: &'a mut [S; 4]) -> &'a mut Quaternion<S> {
unsafe { mem::transmute(v) }
}
}
impl<S: BaseFloat> Into<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn into(self) -> (S, S, S, S) {
match self { Quaternion { s, v: Vector3 { x, y, z } } => (s, x, y, z) }
}
}
impl<S: BaseFloat> AsRef<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn as_ref(&self) -> &(S, S, S, S) {
unsafe { mem::transmute(self) }
}
}
impl<S: BaseFloat> AsMut<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn as_mut(&mut self) -> &mut (S, S, S, S) {
unsafe { mem::transmute(self) }
}
}
impl<S: BaseFloat> From<(S, S, S, S)> for Quaternion<S> {
#[inline]
fn from(v: (S, S, S, S)) -> Quaternion<S> {
match v { (w, xi, yj, zk) => Quaternion::new(w, xi, yj, zk) }
}
}
impl<'a, S: BaseFloat> From<&'a (S, S, S, S)> for &'a Quaternion<S> {
#[inline]
fn from(v: &'a (S, S, S, S)) -> &'a Quaternion<S> {
unsafe { mem::transmute(v) }
}
}
impl<'a, S: BaseFloat> From<&'a mut (S, S, S, S)> for &'a mut Quaternion<S> {
#[inline]
fn from(v: &'a mut (S, S, S, S)) -> &'a mut Quaternion<S> {
unsafe { mem::transmute(v) }
}
}
2015-09-20 21:56:03 +00:00
macro_rules! index_operators {
($S:ident, $Output:ty, $I:ty) => {
impl<$S: BaseFloat> Index<$I> for Quaternion<$S> {
type Output = $Output;
#[inline]
fn index<'a>(&'a self, i: $I) -> &'a $Output {
let v: &[$S; 4] = self.as_ref(); &v[i]
}
}
2015-09-20 21:56:03 +00:00
impl<$S: BaseFloat> IndexMut<$I> for Quaternion<$S> {
#[inline]
fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output {
let v: &mut [$S; 4] = self.as_mut(); &mut v[i]
}
}
}
}
2015-09-20 21:56:03 +00:00
index_operators!(S, S, usize);
index_operators!(S, [S], Range<usize>);
index_operators!(S, [S], RangeTo<usize>);
index_operators!(S, [S], RangeFrom<usize>);
index_operators!(S, [S], RangeFull);
2015-03-15 02:53:57 +00:00
impl<S: BaseFloat + Rand> Rand for Quaternion<S> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Quaternion<S> {
Quaternion::from_sv(rng.gen(), rng.gen())
}
}
#[cfg(test)]
mod tests {
use quaternion::*;
use vector::*;
const QUATERNION: Quaternion<f32> = Quaternion {
s: 1.0,
v: Vector3 { x: 2.0, y: 3.0, z: 4.0 },
};
#[test]
fn test_into() {
let v = QUATERNION;
{
let v: [f32; 4] = v.into();
assert_eq!(v, [1.0, 2.0, 3.0, 4.0]);
}
{
let v: (f32, f32, f32, f32) = v.into();
assert_eq!(v, (1.0, 2.0, 3.0, 4.0));
}
}
#[test]
fn test_as_ref() {
let v = QUATERNION;
{
let v: &[f32; 4] = v.as_ref();
assert_eq!(v, &[1.0, 2.0, 3.0, 4.0]);
}
{
let v: &(f32, f32, f32, f32) = v.as_ref();
assert_eq!(v, &(1.0, 2.0, 3.0, 4.0));
}
}
#[test]
fn test_as_mut() {
let mut v = QUATERNION;
{
let v: &mut[f32; 4] = v.as_mut();
assert_eq!(v, &mut [1.0, 2.0, 3.0, 4.0]);
}
{
let v: &mut(f32, f32, f32, f32) = v.as_mut();
assert_eq!(v, &mut (1.0, 2.0, 3.0, 4.0));
}
}
#[test]
fn test_from() {
assert_eq!(Quaternion::from([1.0, 2.0, 3.0, 4.0]), QUATERNION);
{
let v = &[1.0, 2.0, 3.0, 4.0];
let v: &Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
{
let v = &mut [1.0, 2.0, 3.0, 4.0];
let v: &mut Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
assert_eq!(Quaternion::from((1.0, 2.0, 3.0, 4.0)), QUATERNION);
{
let v = &(1.0, 2.0, 3.0, 4.0);
let v: &Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
{
let v = &mut (1.0, 2.0, 3.0, 4.0);
let v: &mut Quaternion<_> = From::from(v);
assert_eq!(v, &QUATERNION);
}
}
}