2012-12-13 13:01:42 +00:00
|
|
|
use core::cast::transmute;
|
|
|
|
use core::cmp::Eq;
|
|
|
|
use core::ptr::to_unsafe_ptr;
|
|
|
|
use core::vec::raw::buf_as_slice;
|
|
|
|
|
|
|
|
use std::cmp::FuzzyEq;
|
|
|
|
|
|
|
|
use angle::Angle;
|
|
|
|
use funs::common::*;
|
|
|
|
use funs::exponential::*;
|
|
|
|
use funs::triganomic::{sin, cos};
|
|
|
|
use num::types::{Float, Number};
|
2012-12-14 06:22:45 +00:00
|
|
|
use quat::Quat;
|
2012-12-13 13:01:42 +00:00
|
|
|
use vec::Vec3;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A 3 x 3 column major matrix
|
|
|
|
*
|
|
|
|
* # Type parameters
|
|
|
|
*
|
|
|
|
* * `T` - The type of the elements of the matrix. Should be a floating point type.
|
|
|
|
*
|
|
|
|
* # Fields
|
|
|
|
*
|
|
|
|
* * `x` - the first column vector of the matrix
|
|
|
|
* * `y` - the second column vector of the matrix
|
|
|
|
* * `z` - the third column vector of the matrix
|
|
|
|
*/
|
|
|
|
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
|
|
|
|
|
|
|
|
pub impl<T:Copy Float> Mat3<T> {
|
|
|
|
/**
|
|
|
|
* Construct a 3 x 3 matrix
|
|
|
|
*
|
|
|
|
* # Arguments
|
|
|
|
*
|
|
|
|
* * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix
|
|
|
|
* * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix
|
|
|
|
* * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix
|
|
|
|
*
|
|
|
|
* ~~~
|
|
|
|
* c0 c1 c2
|
|
|
|
* +------+------+------+
|
|
|
|
* r0 | c0r0 | c1r0 | c2r0 |
|
|
|
|
* +------+------+------+
|
|
|
|
* r1 | c0r1 | c1r1 | c2r1 |
|
|
|
|
* +------+------+------+
|
|
|
|
* r2 | c0r2 | c1r2 | c2r2 |
|
|
|
|
* +------+------+------+
|
|
|
|
* ~~~
|
|
|
|
*/
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn new(c0r0:T, c0r1:T, c0r2:T,
|
|
|
|
c1r0:T, c1r1:T, c1r2:T,
|
|
|
|
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
|
|
|
|
Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2),
|
|
|
|
Vec3::new(move c1r0, move c1r1, move c1r2),
|
|
|
|
Vec3::new(move c2r0, move c2r1, move c2r2))
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Construct a 3 x 3 matrix from column vectors
|
|
|
|
*
|
|
|
|
* # Arguments
|
|
|
|
*
|
|
|
|
* * `c0` - the first column vector of the matrix
|
|
|
|
* * `c1` - the second column vector of the matrix
|
|
|
|
* * `c2` - the third column vector of the matrix
|
|
|
|
*
|
|
|
|
* ~~~
|
|
|
|
* c0 c1 c2
|
|
|
|
* +------+------+------+
|
|
|
|
* r0 | c0.x | c1.y | c2.z |
|
|
|
|
* +------+------+------+
|
|
|
|
* r1 | c0.x | c1.y | c2.z |
|
|
|
|
* +------+------+------+
|
|
|
|
* r2 | c0.x | c1.y | c2.z |
|
|
|
|
* +------+------+------+
|
|
|
|
* ~~~
|
|
|
|
*/
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
|
|
|
|
Mat3 { x: move c0,
|
|
|
|
y: move c1,
|
|
|
|
z: move c2 }
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
|
|
|
|
*
|
|
|
|
* # Arguments
|
|
|
|
*
|
|
|
|
* * `value` - the value to set the major diagonal to
|
|
|
|
*
|
|
|
|
* ~~~
|
|
|
|
* c0 c1 c2
|
|
|
|
* +-----+-----+-----+
|
|
|
|
* r0 | val | 0 | 0 |
|
|
|
|
* +-----+-----+-----+
|
|
|
|
* r1 | 0 | val | 0 |
|
|
|
|
* +-----+-----+-----+
|
|
|
|
* r2 | 0 | 0 | val |
|
|
|
|
* +-----+-----+-----+
|
|
|
|
* ~~~
|
|
|
|
*/
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn from_value(value: T) -> Mat3<T> {
|
|
|
|
let _0 = Number::from(0);
|
|
|
|
Mat3::new(value, _0, _0,
|
|
|
|
_0, value, _0,
|
|
|
|
_0, _0, value)
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: An interim solution to the issues with static functions
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn identity() -> Mat3<T> {
|
|
|
|
let _0 = Number::from(0);
|
|
|
|
let _1 = Number::from(1);
|
|
|
|
Mat3::new(_1, _0, _0,
|
|
|
|
_0, _1, _0,
|
|
|
|
_0, _0, _1)
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: An interim solution to the issues with static functions
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn zero() -> Mat3<T> {
|
|
|
|
let _0 = Number::from(0);
|
|
|
|
Mat3::new(_0, _0, _0,
|
|
|
|
_0, _0, _0,
|
|
|
|
_0, _0, _0)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub impl<T:Copy Float> Mat3<T>: Matrix<T, Vec3<T>> {
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn col(&self, i: uint) -> Vec3<T> { self[i] }
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn row(&self, i: uint) -> Vec3<T> {
|
|
|
|
Vec3::new(self[0][i],
|
|
|
|
self[1][i],
|
|
|
|
self[2][i])
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the multiplicative identity matrix
|
|
|
|
* ~~~
|
|
|
|
* c0 c1 c2
|
|
|
|
* +----+----+----+
|
|
|
|
* r0 | 1 | 0 | 0 |
|
|
|
|
* +----+----+----+
|
|
|
|
* r1 | 0 | 1 | 0 |
|
|
|
|
* +----+----+----+
|
|
|
|
* r2 | 0 | 0 | 1 |
|
|
|
|
* +----+----+----+
|
|
|
|
* ~~~
|
|
|
|
*/
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn identity() -> Mat3<T> {
|
|
|
|
let _0 = Number::from(0);
|
|
|
|
let _1 = Number::from(1);
|
|
|
|
Mat3::new(_1, _0, _0,
|
|
|
|
_0, _1, _0,
|
|
|
|
_0, _0, _1)
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the additive identity matrix
|
|
|
|
* ~~~
|
|
|
|
* c0 c1 c2
|
|
|
|
* +----+----+----+
|
|
|
|
* r0 | 0 | 0 | 0 |
|
|
|
|
* +----+----+----+
|
|
|
|
* r1 | 0 | 0 | 0 |
|
|
|
|
* +----+----+----+
|
|
|
|
* r2 | 0 | 0 | 0 |
|
|
|
|
* +----+----+----+
|
|
|
|
* ~~~
|
|
|
|
*/
|
|
|
|
#[inline(always)]
|
|
|
|
static pure fn zero() -> Mat3<T> {
|
|
|
|
let _0 = Number::from(0);
|
|
|
|
Mat3::new(_0, _0, _0,
|
|
|
|
_0, _0, _0,
|
|
|
|
_0, _0, _0)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn mul_t(&self, value: T) -> Mat3<T> {
|
|
|
|
Mat3::from_cols(self[0].mul_t(value),
|
|
|
|
self[1].mul_t(value),
|
|
|
|
self[2].mul_t(value))
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
|
|
|
|
Vec3::new(self.row(0).dot(vec),
|
|
|
|
self.row(1).dot(vec),
|
|
|
|
self.row(2).dot(vec))
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
|
|
|
Mat3::from_cols(self[0].add_v(&other[0]),
|
|
|
|
self[1].add_v(&other[1]),
|
|
|
|
self[2].add_v(&other[2]))
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
|
|
|
Mat3::from_cols(self[0].sub_v(&other[0]),
|
|
|
|
self[1].sub_v(&other[1]),
|
|
|
|
self[2].sub_v(&other[2]))
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
|
|
|
Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)),
|
|
|
|
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)),
|
|
|
|
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)))
|
|
|
|
}
|
|
|
|
|
|
|
|
pure fn dot(&self, other: &Mat3<T>) -> T {
|
|
|
|
other.transpose().mul_m(self).trace()
|
|
|
|
}
|
|
|
|
|
|
|
|
pure fn determinant(&self) -> T {
|
|
|
|
self.col(0).dot(&self.col(1).cross(&self.col(2)))
|
|
|
|
}
|
|
|
|
|
|
|
|
pure fn trace(&self) -> T {
|
|
|
|
self[0][0] + self[1][1] + self[2][2]
|
|
|
|
}
|
|
|
|
|
|
|
|
// #[inline(always)]
|
|
|
|
pure fn inverse(&self) -> Option<Mat3<T>> {
|
|
|
|
let d = self.determinant();
|
|
|
|
if d.fuzzy_eq(&Number::from(0)) {
|
|
|
|
None
|
|
|
|
} else {
|
|
|
|
Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d),
|
|
|
|
self[2].cross(&self[0]).div_t(d),
|
|
|
|
self[0].cross(&self[1]).div_t(d)).transpose())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn transpose(&self) -> Mat3<T> {
|
|
|
|
Mat3::new(self[0][0], self[1][0], self[2][0],
|
|
|
|
self[0][1], self[1][1], self[2][1],
|
|
|
|
self[0][2], self[1][2], self[2][2])
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn is_identity(&self) -> bool {
|
|
|
|
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
|
|
|
self.fuzzy_eq(&Mat3::identity())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn is_diagonal(&self) -> bool {
|
|
|
|
let _0 = Number::from(0);
|
|
|
|
self[0][1].fuzzy_eq(&_0) &&
|
|
|
|
self[0][2].fuzzy_eq(&_0) &&
|
|
|
|
|
|
|
|
self[1][0].fuzzy_eq(&_0) &&
|
|
|
|
self[1][2].fuzzy_eq(&_0) &&
|
|
|
|
|
|
|
|
self[2][0].fuzzy_eq(&_0) &&
|
|
|
|
self[2][1].fuzzy_eq(&_0)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn is_rotated(&self) -> bool {
|
|
|
|
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
|
|
|
!self.fuzzy_eq(&Mat3::identity())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn is_symmetric(&self) -> bool {
|
|
|
|
self[0][1].fuzzy_eq(&self[1][0]) &&
|
|
|
|
self[0][2].fuzzy_eq(&self[2][0]) &&
|
|
|
|
|
|
|
|
self[1][0].fuzzy_eq(&self[0][1]) &&
|
|
|
|
self[1][2].fuzzy_eq(&self[2][1]) &&
|
|
|
|
|
|
|
|
self[2][0].fuzzy_eq(&self[0][2]) &&
|
|
|
|
self[2][1].fuzzy_eq(&self[1][2])
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn is_invertible(&self) -> bool {
|
|
|
|
!self.determinant().fuzzy_eq(&Number::zero())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn to_ptr(&self) -> *T {
|
|
|
|
unsafe {
|
|
|
|
transmute::<*Mat3<T>, *T>(
|
|
|
|
to_unsafe_ptr(self)
|
|
|
|
)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub impl<T:Copy Float Sign> Mat3<T>: MutableMatrix<T, Vec3<T>> {
|
|
|
|
#[inline(always)]
|
|
|
|
fn col_mut(&mut self, i: uint) -> &self/mut Vec3<T> {
|
|
|
|
match i {
|
|
|
|
0 => &mut self.x,
|
|
|
|
1 => &mut self.y,
|
|
|
|
2 => &mut self.z,
|
|
|
|
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn swap_cols(&mut self, a: uint, b: uint) {
|
|
|
|
util::swap(self.col_mut(a),
|
|
|
|
self.col_mut(b));
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn swap_rows(&mut self, a: uint, b: uint) {
|
|
|
|
self.x.swap(a, b);
|
|
|
|
self.y.swap(a, b);
|
|
|
|
self.z.swap(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn set(&mut self, other: &Mat3<T>) {
|
|
|
|
(*self) = (*other);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn to_identity(&mut self) {
|
|
|
|
(*self) = Mat3::identity();
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn to_zero(&mut self) {
|
|
|
|
(*self) = Mat3::zero();
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn mul_self_t(&mut self, value: T) {
|
|
|
|
self.col_mut(0).mul_self_t(&value);
|
|
|
|
self.col_mut(1).mul_self_t(&value);
|
|
|
|
self.col_mut(2).mul_self_t(&value);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn add_self_m(&mut self, other: &Mat3<T>) {
|
|
|
|
self.col_mut(0).add_self_v(&other[0]);
|
|
|
|
self.col_mut(1).add_self_v(&other[1]);
|
|
|
|
self.col_mut(2).add_self_v(&other[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn sub_self_m(&mut self, other: &Mat3<T>) {
|
|
|
|
self.col_mut(0).sub_self_v(&other[0]);
|
|
|
|
self.col_mut(1).sub_self_v(&other[1]);
|
|
|
|
self.col_mut(2).sub_self_v(&other[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn invert_self(&mut self) {
|
|
|
|
match self.inverse() {
|
|
|
|
Some(m) => (*self) = m,
|
|
|
|
None => fail(~"Couldn't invert the matrix!")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn transpose_self(&mut self) {
|
|
|
|
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
|
|
|
|
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
|
|
|
|
|
|
|
|
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
|
|
|
|
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
|
|
|
|
|
|
|
|
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
|
|
|
|
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-14 06:22:45 +00:00
|
|
|
pub impl<T:Copy Float Exp> Mat3<T>: Matrix3<T, Vec3<T>> {
|
2012-12-13 13:01:42 +00:00
|
|
|
#[inline(always)]
|
|
|
|
static pure fn from_axis_angle<A:Angle<T>>(axis: &Vec3<T>, theta: A) -> Mat3<T> {
|
|
|
|
let c: T = cos(&theta.to_radians());
|
|
|
|
let s: T = sin(&theta.to_radians());
|
|
|
|
let _0: T = Number::from(0);
|
|
|
|
let _1: T = Number::from(1);
|
|
|
|
let _1_c: T = _1 - c;
|
|
|
|
|
|
|
|
let x = axis.x;
|
|
|
|
let y = axis.y;
|
|
|
|
let z = axis.z;
|
|
|
|
|
|
|
|
Mat3::new(_1_c * x * x + c, _1_c * x * y + s * z, _1_c * x * z - s * y,
|
|
|
|
_1_c * x * y - s * z, _1_c * y * y + c, _1_c * y * z + s * x,
|
|
|
|
_1_c * x * z + s * y, _1_c * y * z - s * x, _1_c * z * z + c)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn to_mat4(&self) -> Mat4<T> {
|
2012-12-14 08:37:02 +00:00
|
|
|
let _0 = Number::from(0);
|
|
|
|
let _1 = Number::from(1);
|
|
|
|
Mat4::new(self[0][0], self[0][1], self[0][2], _0,
|
|
|
|
self[1][0], self[1][1], self[1][2], _0,
|
|
|
|
self[2][0], self[2][1], self[2][2], _0,
|
|
|
|
_0, _0, _0, _1)
|
2012-12-13 13:01:42 +00:00
|
|
|
}
|
2012-12-14 06:22:45 +00:00
|
|
|
|
2012-12-13 13:01:42 +00:00
|
|
|
pure fn to_Quat() -> Quat<T> {
|
|
|
|
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
|
|
|
|
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
|
|
|
|
|
|
|
|
let mut s;
|
|
|
|
let w, x, y, z;
|
|
|
|
let trace = self.trace();
|
|
|
|
|
|
|
|
let _1: T = Number::from(1.0);
|
|
|
|
let half: T = Number::from(0.5);
|
|
|
|
|
|
|
|
if trace >= Number::from(0) {
|
|
|
|
s = (_1 + trace).sqrt();
|
|
|
|
w = half * s;
|
|
|
|
s = half / s;
|
|
|
|
x = (self[1][2] - self[2][1]) * s;
|
|
|
|
y = (self[2][0] - self[0][2]) * s;
|
|
|
|
z = (self[0][1] - self[1][0]) * s;
|
|
|
|
} else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) {
|
|
|
|
s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt();
|
|
|
|
w = half * s;
|
|
|
|
s = half / s;
|
|
|
|
x = (self[0][1] - self[1][0]) * s;
|
|
|
|
y = (self[2][0] - self[0][2]) * s;
|
|
|
|
z = (self[1][2] - self[2][1]) * s;
|
|
|
|
} else if self[1][1] > self[2][2] {
|
|
|
|
s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt();
|
|
|
|
w = half * s;
|
|
|
|
s = half / s;
|
|
|
|
x = (self[0][1] - self[1][0]) * s;
|
|
|
|
y = (self[1][2] - self[2][1]) * s;
|
|
|
|
z = (self[2][0] - self[0][2]) * s;
|
|
|
|
} else {
|
|
|
|
s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt();
|
|
|
|
w = half * s;
|
|
|
|
s = half / s;
|
|
|
|
x = (self[2][0] - self[0][2]) * s;
|
|
|
|
y = (self[1][2] - self[2][1]) * s;
|
|
|
|
z = (self[0][1] - self[1][0]) * s;
|
|
|
|
}
|
|
|
|
|
|
|
|
Quat::new(w, x, y, z)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub impl<T:Copy> Mat3<T>: Index<uint, Vec3<T>> {
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn index(&self, i: uint) -> Vec3<T> {
|
|
|
|
unsafe { do buf_as_slice(
|
|
|
|
transmute::<*Mat3<T>, *Vec3<T>>(
|
|
|
|
to_unsafe_ptr(self)), 3) |slice| { slice[i] }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub impl<T:Copy Float> Mat3<T>: Neg<Mat3<T>> {
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn neg(&self) -> Mat3<T> {
|
|
|
|
Mat3::from_cols(-self[0], -self[1], -self[2])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub impl<T:Copy Float> Mat3<T>: Eq {
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn eq(&self, other: &Mat3<T>) -> bool {
|
|
|
|
self[0] == other[0] &&
|
|
|
|
self[1] == other[1] &&
|
|
|
|
self[2] == other[2]
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn ne(&self, other: &Mat3<T>) -> bool {
|
|
|
|
!(self == other)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub impl<T:Copy Float> Mat3<T>: FuzzyEq {
|
|
|
|
#[inline(always)]
|
|
|
|
pure fn fuzzy_eq(other: &Mat3<T>) -> bool {
|
|
|
|
self[0].fuzzy_eq(&other[0]) &&
|
|
|
|
self[1].fuzzy_eq(&other[1]) &&
|
|
|
|
self[2].fuzzy_eq(&other[2])
|
|
|
|
}
|
|
|
|
}
|