cgmath/src/mat.rs

1818 lines
53 KiB
Rust
Raw Normal View History

use core::num::Zero::zero;
use core::num::One::one;
use std::cmp::{FuzzyEq, FUZZY_EPSILON};
use numeric::*;
2012-12-13 13:01:42 +00:00
use vec::*;
use quat::Quat;
/**
2012-12-03 22:31:26 +00:00
* The base square matrix trait
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
* * `V` - The type of the row and column vectors. Should have components of a
* floating point type and have the same number of dimensions as the
* number of rows and columns in the matrix.
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat<T,V>: Index<uint, V> + Eq + Neg<Self> {
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The column vector at `i`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn col(&self, i: uint) -> V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The row vector at `i`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn row(&self, i: uint) -> V;
/**
* Construct a diagonal matrix with the major diagonal set to `value`
*/
2013-03-28 10:37:25 +00:00
fn from_value(value: T) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The identity matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:37:25 +00:00
fn identity() -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* A matrix with all elements set to zero
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:37:25 +00:00
fn zero() -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The scalar multiplication of this matrix and `value`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn mul_t(&self, value: T) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix vector product of the matrix and `vec`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn mul_v(&self, vec: &V) -> V;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix addition of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn add_m(&self, other: &Self) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The difference between the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn sub_m(&self, other: &Self) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix product of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn mul_m(&self, other: &Self) -> Self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The matrix dot product of the matrix and `other`
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn dot(&self, other: &Self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The determinant of the matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn determinant(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The sum of the main diagonal of the matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn trace(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
* Returns the inverse of the matrix
*
* # Return value
*
2012-12-05 08:09:53 +00:00
* * `Some(m)` - if the inversion was successful, where `m` is the inverted matrix
* * `None` - if the inversion was unsuccessful (because the matrix was not invertable)
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn inverse(&self) -> Option<Self>;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The transposed matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn transpose(&self) -> Self;
/**
* # Return value
*
* A mutable reference to the column at `i`
*/
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut V;
/**
* Swap two columns of the matrix in place
*/
fn swap_cols(&mut self, a: uint, b: uint);
/**
* Swap two rows of the matrix in place
*/
fn swap_rows(&mut self, a: uint, b: uint);
/**
* Sets the matrix to `other`
*/
fn set(&mut self, other: &Self);
/**
* Sets the matrix to the identity matrix
*/
fn to_identity(&mut self);
/**
* Sets each element of the matrix to zero
*/
fn to_zero(&mut self);
/**
* Multiplies the matrix by a scalar
*/
fn mul_self_t(&mut self, value: T);
/**
* Add the matrix `other` to `self`
*/
fn add_self_m(&mut self, other: &Self);
/**
* Subtract the matrix `other` from `self`
*/
fn sub_self_m(&mut self, other: &Self);
/**
* Sets the matrix to its inverse
*
* # Failure
*
* Fails if the matrix is not invertable. Make sure you check with the
* `is_invertible` method before you attempt this!
*/
fn invert_self(&mut self);
/**
* Sets the matrix to its transpose
*/
fn transpose_self(&mut self);
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is an identity matrix
*
* # Return value
*
2012-12-05 08:09:53 +00:00
* `true` if the matrix is approximately equal to the identity matrix
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_identity(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is diagonal
*
* # Return value
*
* `true` all the elements outside the main diagonal are approximately
* equal to zero.
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_diagonal(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is rotated
*
* # Return value
*
* `true` if the matrix is not approximately equal to the identity matrix.
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_rotated(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is symmetric
*
* # Return value
*
* `true` if the matrix is approximately equal to its transpose).
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_symmetric(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* Check to see if the matrix is invertable
*
* # Return value
*
* `true` if the matrix is invertable
2012-12-03 22:31:26 +00:00
*/
2013-03-28 10:35:51 +00:00
fn is_invertible(&self) -> bool;
2012-12-12 01:29:35 +00:00
/**
* # Return value
*
* A pointer to the first element of the matrix
*/
2013-03-28 10:35:51 +00:00
fn to_ptr(&self) -> *T;
}
/**
* A 2 x 2 matrix
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat2<T,V>: BaseMat<T,V> {
2013-03-28 10:37:25 +00:00
fn new(c0r0: T, c0r1: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_cols(c0: V, c1: V) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle(radians: T) -> Self;
2013-03-28 10:35:51 +00:00
fn to_mat3(&self) -> Mat3<T>;
2013-03-28 10:35:51 +00:00
fn to_mat4(&self) -> Mat4<T>;
}
/**
* A 3 x 3 matrix
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat3<T,V>: BaseMat<T,V> {
2013-03-28 10:37:25 +00:00
fn new(c0r0:T, c0r1:T, c0r2:T,
2013-04-02 04:01:38 +00:00
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_cols(c0: V, c1: V, c2: V) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_x(radians: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_y(radians: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_z(radians: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Self;
2013-03-28 10:37:25 +00:00
fn from_axes(x: V, y: V, z: V) -> Self;
2013-03-28 10:37:25 +00:00
fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Self;
2013-03-28 10:35:51 +00:00
fn to_mat4(&self) -> Mat4<T>;
2013-03-28 10:35:51 +00:00
fn to_quat(&self) -> Quat<T>;
}
/**
* A 4 x 4 matrix
*/
2013-04-02 05:12:13 +00:00
pub trait BaseMat4<T,V>: BaseMat<T,V> {
2013-03-28 10:37:25 +00:00
fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Self;
2013-03-28 10:37:25 +00:00
fn from_cols(c0: V, c1: V, c2: V, c3: V) -> Self;
}
/**
* A 2 x 2 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
impl<T:Copy + Float> BaseMat<T, Vec2<T>> for Mat2<T> {
#[inline(always)]
fn col(&self, i: uint) -> Vec2<T> { self[i] }
#[inline(always)]
fn row(&self, i: uint) -> Vec2<T> {
2013-04-02 05:12:13 +00:00
BaseVec2::new(self[0][i],
self[1][i])
}
/**
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1
* +-----+-----+
* r0 | val | 0 |
* +-----+-----+
* r1 | 0 | val |
* +-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::new(value, zero(),
zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 1 | 0 |
* +----+----+
* r1 | 0 | 1 |
* +----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::new( one::<T>(), zero::<T>(),
zero::<T>(), one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 0 | 0 |
* +----+----+
* r1 | 0 | 0 |
* +----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::new(zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::from_cols(self[0].mul_t(value),
self[1].mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
2013-04-02 05:12:13 +00:00
BaseVec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]))
}
#[inline(always)]
fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]))
}
#[inline(always)]
fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)))
}
fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
self[0][0] * self[1][1] - self[1][0] * self[0][1]
}
fn trace(&self) -> T {
self[0][0] + self[1][1]
}
#[inline(always)]
fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.fuzzy_eq(&zero()) {
None
} else {
2013-04-02 05:12:13 +00:00
Some(BaseMat2::new( self[1][1]/d, -self[0][1]/d,
-self[1][0]/d, self[0][0]/d))
}
}
#[inline(always)]
fn transpose(&self) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::new(self[0][0], self[1][0],
self[0][1], self[1][1])
}
#[inline(always)]
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
_ => fail!(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
*self.col_mut(a) <-> *self.col_mut(b);
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat2<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.x.mul_self_t(value);
self.y.mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat2<T>) {
self.x.add_self_v(&other[0]);
self.y.add_self_v(&other[1]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat2<T>) {
self.x.sub_self_v(&other[0]);
self.y.sub_self_v(&other[1]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
*self.x.index_mut(1) <-> *self.y.index_mut(0);
*self.y.index_mut(0) <-> *self.x.index_mut(1);
}
#[inline(always)]
fn is_identity(&self) -> bool {
2013-04-02 05:12:13 +00:00
self.fuzzy_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self[0][1].fuzzy_eq(&zero()) &&
self[1][0].fuzzy_eq(&zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
2013-04-02 05:12:13 +00:00
!self.fuzzy_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[1][0].fuzzy_eq(&self[0][1])
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
unsafe { cast::transmute(self) }
}
}
impl<T:Copy + Float> BaseMat2<T, Vec2<T>> for Mat2<T> {
/**
* Construct a 2 x 2 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1` - the first column of the matrix
* * `c1r0`, `c1r1` - the second column of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0r0 | c1r0 |
* +------+------+
* r1 | c0r1 | c1r1 |
* +------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0: T, c0r1: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::from_cols(BaseVec2::new::<T,Vec2<T>>(c0r0, c0r1),
BaseVec2::new::<T,Vec2<T>>(c1r0, c1r1))
}
/**
* Construct a 2 x 2 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0.x | c1.x |
* +------+------+
* r1 | c0.y | c1.y |
* +------+------+
* ~~~
*/
#[inline(always)]
2013-04-02 04:01:38 +00:00
fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: c0, y: c1 }
}
#[inline(always)]
fn from_angle(radians: T) -> Mat2<T> {
let cos_theta = cos(radians);
let sin_theta = sin(radians);
2013-04-02 05:12:13 +00:00
BaseMat2::new(cos_theta, -sin_theta,
sin_theta, cos_theta)
}
/**
* Returns the the matrix with an extra row and column added
* ~~~
* c0 c1 c0 c1 c2
* +----+----+ +----+----+----+
* r0 | a | b | r0 | a | b | 0 |
* +----+----+ +----+----+----+
* r1 | c | d | => r1 | c | d | 0 |
* +----+----+ +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat3(&self) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::new(self[0][0], self[0][1], zero(),
self[1][0], self[1][1], zero(),
zero(), zero(), one())
}
/**
* Returns the the matrix with an extra two rows and columns added
* ~~~
* c0 c1 c0 c1 c2 c3
* +----+----+ +----+----+----+----+
* r0 | a | b | r0 | a | b | 0 | 0 |
* +----+----+ +----+----+----+----+
* r1 | c | d | => r1 | c | d | 0 | 0 |
* +----+----+ +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat4(&self) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new(self[0][0], self[0][1], zero(), zero(),
self[1][0], self[1][1], zero(), zero(),
zero(), zero(), one(), zero(),
zero(), zero(), zero(), one())
}
}
impl<T:Copy> Index<uint, Vec2<T>> for Mat2<T> {
#[inline(always)]
fn index(&self, i: &uint) -> Vec2<T> {
unsafe { do vec::raw::buf_as_slice(cast::transmute(self), 2) |slice| { slice[*i] } }
}
}
impl<T:Copy + Float> Neg<Mat2<T>> for Mat2<T> {
#[inline(always)]
fn neg(&self) -> Mat2<T> {
2013-04-02 05:12:13 +00:00
BaseMat2::from_cols(-self[0], -self[1])
}
}
impl<T:Copy + Float> FuzzyEq<T> for Mat2<T> {
#[inline(always)]
fn fuzzy_eq(&self, other: &Mat2<T>) -> bool {
self.fuzzy_eq_eps(other, &num::cast(FUZZY_EPSILON))
}
#[inline(always)]
fn fuzzy_eq_eps(&self, other: &Mat2<T>, epsilon: &T) -> bool {
self[0].fuzzy_eq_eps(&other[0], epsilon) &&
self[1].fuzzy_eq_eps(&other[1], epsilon)
}
}
2013-03-31 11:02:36 +00:00
macro_rules! mat2_type(
($name:ident <$T:ty, $V:ty>) => (
pub impl $name {
#[inline(always)] fn new(c0r0: $T, c0r1: $T, c1r0: $T, c1r1: $T)
2013-04-02 05:12:13 +00:00
-> $name { BaseMat2::new(c0r0, c0r1, c1r0, c1r1) }
2013-03-31 11:02:36 +00:00
#[inline(always)] fn from_cols(c0: $V, c1: $V)
2013-04-02 05:12:13 +00:00
-> $name { BaseMat2::from_cols(c0, c1) }
#[inline(always)] fn from_value(v: $T) -> $name { BaseMat::from_value(v) }
2013-03-31 11:02:36 +00:00
2013-04-02 05:12:13 +00:00
#[inline(always)] fn identity() -> $name { BaseMat::identity() }
#[inline(always)] fn zero() -> $name { BaseMat::zero() }
2013-03-31 11:02:36 +00:00
2013-04-02 05:12:13 +00:00
#[inline(always)] fn from_angle(radians: $T) -> $name { BaseMat2::from_angle(radians) }
2013-03-31 11:02:36 +00:00
#[inline(always)] fn dim() -> uint { 2 }
#[inline(always)] fn rows() -> uint { 2 }
#[inline(always)] fn cols() -> uint { 2 }
#[inline(always)] fn size_of() -> uint { sys::size_of::<$name>() }
}
)
)
// GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification]
// (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf).
2013-03-31 11:02:36 +00:00
// a 2×2 single-precision floating-point matrix
pub type mat2 = Mat2<f32>;
// a 2×2 double-precision floating-point matrix
pub type dmat2 = Mat2<f64>;
2013-03-31 11:02:36 +00:00
mat2_type!(mat2<f32,vec2>)
mat2_type!(dmat2<f64,dvec2>)
2013-03-31 11:02:36 +00:00
// Rust-style type aliases
pub type Mat2f = Mat2<float>;
pub type Mat2f32 = Mat2<f32>;
pub type Mat2f64 = Mat2<f64>;
2013-03-31 11:02:36 +00:00
mat2_type!(Mat2f<float,Vec2f>)
mat2_type!(Mat2f32<f32,Vec2f32>)
mat2_type!(Mat2f64<f64,Vec2f64>)
/**
* A 3 x 3 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
impl<T:Copy + Float> BaseMat<T, Vec3<T>> for Mat3<T> {
#[inline(always)]
fn col(&self, i: uint) -> Vec3<T> { self[i] }
#[inline(always)]
fn row(&self, i: uint) -> Vec3<T> {
2013-04-02 05:12:13 +00:00
BaseVec3::new(self[0][i],
self[1][i],
self[2][i])
}
/**
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2
* +-----+-----+-----+
* r0 | val | 0 | 0 |
* +-----+-----+-----+
* r1 | 0 | val | 0 |
* +-----+-----+-----+
* r2 | 0 | 0 | val |
* +-----+-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::new(value, zero(), zero(),
zero(), value, zero(),
zero(), zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 1 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 1 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::new( one::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), one::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 0 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 0 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 0 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::new(zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
2013-04-02 05:12:13 +00:00
BaseVec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]))
}
#[inline(always)]
fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]))
}
#[inline(always)]
fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::new(self.row(0).dot(&other.col(0)),
self.row(1).dot(&other.col(0)),
self.row(2).dot(&other.col(0)),
2013-04-02 05:12:13 +00:00
self.row(0).dot(&other.col(1)),
self.row(1).dot(&other.col(1)),
self.row(2).dot(&other.col(1)),
2013-04-02 05:12:13 +00:00
self.row(0).dot(&other.col(2)),
self.row(1).dot(&other.col(2)),
self.row(2).dot(&other.col(2)))
}
fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
self.col(0).dot(&self.col(1).cross(&self.col(2)))
}
fn trace(&self) -> T {
self[0][0] + self[1][1] + self[2][2]
}
// #[inline(always)]
fn inverse(&self) -> Option<Mat3<T>> {
let d = self.determinant();
if d.fuzzy_eq(&zero()) {
None
} else {
2013-04-02 05:12:13 +00:00
let m: Mat3<T> = BaseMat3::from_cols(self[1].cross(&self[2]).div_t(d),
self[2].cross(&self[0]).div_t(d),
self[0].cross(&self[1]).div_t(d));
Some(m.transpose())
}
}
#[inline(always)]
fn transpose(&self) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::new(self[0][0], self[1][0], self[2][0],
self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2])
}
#[inline(always)]
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => fail!(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
*self.col_mut(a) <-> *self.col_mut(b);
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat3<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
*self.col_mut(0).index_mut(1) <-> *self.col_mut(1).index_mut(0);
*self.col_mut(0).index_mut(2) <-> *self.col_mut(2).index_mut(0);
*self.col_mut(1).index_mut(0) <-> *self.col_mut(0).index_mut(1);
*self.col_mut(1).index_mut(2) <-> *self.col_mut(2).index_mut(1);
*self.col_mut(2).index_mut(0) <-> *self.col_mut(0).index_mut(2);
*self.col_mut(2).index_mut(1) <-> *self.col_mut(1).index_mut(2);
}
#[inline(always)]
fn is_identity(&self) -> bool {
2013-04-02 05:12:13 +00:00
self.fuzzy_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self[0][1].fuzzy_eq(&zero()) &&
self[0][2].fuzzy_eq(&zero()) &&
self[1][0].fuzzy_eq(&zero()) &&
self[1][2].fuzzy_eq(&zero()) &&
self[2][0].fuzzy_eq(&zero()) &&
self[2][1].fuzzy_eq(&zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
2013-04-02 05:12:13 +00:00
!self.fuzzy_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2])
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
unsafe { cast::transmute(self) }
}
}
impl<T:Copy + Float> BaseMat3<T, Vec3<T>> for Mat3<T> {
/**
* Construct a 3 x 3 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0r0 | c1r0 | c2r0 |
* +------+------+------+
* r1 | c0r1 | c1r1 | c2r1 |
* +------+------+------+
* r2 | c0r2 | c1r2 | c2r2 |
* +------+------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0:T, c0r1:T, c0r2:T,
2013-04-02 04:01:38 +00:00
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(BaseVec3::new::<T,Vec3<T>>(c0r0, c0r1, c0r2),
BaseVec3::new::<T,Vec3<T>>(c1r0, c1r1, c1r2),
BaseVec3::new::<T,Vec3<T>>(c2r0, c2r1, c2r2))
}
/**
* Construct a 3 x 3 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0.x | c1.x | c2.x |
* +------+------+------+
* r1 | c0.y | c1.y | c2.y |
* +------+------+------+
* r2 | c0.z | c1.z | c2.z |
* +------+------+------+
* ~~~
*/
#[inline(always)]
2013-04-02 04:01:38 +00:00
fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: c0, y: c1, z: c2 }
}
/**
* Construct a matrix from an angular rotation around the `x` axis
*/
#[inline(always)]
fn from_angle_x(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = cos(radians);
let sin_theta = sin(radians);
2013-04-02 05:12:13 +00:00
BaseMat3::new( one(), zero(), zero(),
zero(), cos_theta, sin_theta,
zero(), -sin_theta, cos_theta)
}
/**
* Construct a matrix from an angular rotation around the `y` axis
*/
#[inline(always)]
fn from_angle_y(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = cos(radians);
let sin_theta = sin(radians);
2013-04-02 05:12:13 +00:00
BaseMat3::new(cos_theta, zero(), -sin_theta,
zero(), one(), zero(),
sin_theta, zero(), cos_theta)
}
/**
* Construct a matrix from an angular rotation around the `z` axis
*/
#[inline(always)]
fn from_angle_z(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = cos(radians);
let sin_theta = sin(radians);
2013-04-02 05:12:13 +00:00
BaseMat3::new( cos_theta, sin_theta, zero(),
-sin_theta, cos_theta, zero(),
zero(), zero(), one())
}
/**
* Construct a matrix from Euler angles
*
* # Arguments
*
* * `theta_x` - the angular rotation around the `x` axis (pitch)
* * `theta_y` - the angular rotation around the `y` axis (yaw)
* * `theta_z` - the angular rotation around the `z` axis (roll)
*/
#[inline(always)]
fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let cx = cos(radians_x);
let sx = sin(radians_x);
let cy = cos(radians_y);
let sy = sin(radians_y);
let cz = cos(radians_z);
let sz = sin(radians_z);
2013-04-02 05:12:13 +00:00
BaseMat3::new( cy*cz, cy*sz, -sy,
-cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy,
sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy)
}
/**
* Construct a matrix from an axis and an angular rotation
*/
#[inline(always)]
fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Mat3<T> {
let c = cos(radians);
let s = sin(radians);
let _1_c = one::<T>() - c;
let x = axis.x;
let y = axis.y;
let z = axis.z;
2013-04-02 05:12:13 +00:00
BaseMat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y,
_1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x,
_1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c)
}
#[inline(always)]
fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(x, y, z)
}
#[inline(always)]
fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Mat3<T> {
let dir_ = dir.normalize();
let side = dir_.cross(&up.normalize());
let up_ = side.cross(&dir_).normalize();
2013-04-02 05:12:13 +00:00
BaseMat3::from_axes(up_, side, dir_)
}
/**
* Returns the the matrix with an extra row and column added
* ~~~
* c0 c1 c2 c0 c1 c2 c3
* +----+----+----+ +----+----+----+----+
* r0 | a | b | c | r0 | a | b | c | 0 |
* +----+----+----+ +----+----+----+----+
* r1 | d | e | f | => r1 | d | e | f | 0 |
* +----+----+----+ +----+----+----+----+
* r2 | g | h | i | r2 | g | h | i | 0 |
* +----+----+----+ +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn to_mat4(&self) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new(self[0][0], self[0][1], self[0][2], zero(),
self[1][0], self[1][1], self[1][2], zero(),
self[2][0], self[2][1], self[2][2], zero(),
zero(), zero(), zero(), one())
}
/**
* Convert the matrix to a quaternion
*/
#[inline(always)]
fn to_quat(&self) -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
let mut s;
let w, x, y, z;
let trace = self.trace();
let _1: T = num::cast(1.0);
let half: T = num::cast(0.5);
if trace >= zero() {
s = (_1 + trace).sqrt();
w = half * s;
s = half / s;
x = (self[1][2] - self[2][1]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[0][1] - self[1][0]) * s;
} else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) {
s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[1][2] - self[2][1]) * s;
} else if self[1][1] > self[2][2] {
s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[2][0] - self[0][2]) * s;
} else {
s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt();
w = half * s;
s = half / s;
x = (self[2][0] - self[0][2]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[0][1] - self[1][0]) * s;
}
Quat::new(w, x, y, z)
}
}
impl<T:Copy> Index<uint, Vec3<T>> for Mat3<T> {
#[inline(always)]
fn index(&self, i: &uint) -> Vec3<T> {
unsafe { do vec::raw::buf_as_slice(cast::transmute(self), 3) |slice| { slice[*i] } }
}
}
impl<T:Copy + Float> Neg<Mat3<T>> for Mat3<T> {
#[inline(always)]
fn neg(&self) -> Mat3<T> {
2013-04-02 05:12:13 +00:00
BaseMat3::from_cols(-self[0], -self[1], -self[2])
}
}
impl<T:Copy + Float> FuzzyEq<T> for Mat3<T> {
#[inline(always)]
fn fuzzy_eq(&self, other: &Mat3<T>) -> bool {
self.fuzzy_eq_eps(other, &num::cast(FUZZY_EPSILON))
}
#[inline(always)]
fn fuzzy_eq_eps(&self, other: &Mat3<T>, epsilon: &T) -> bool {
self[0].fuzzy_eq_eps(&other[0], epsilon) &&
self[1].fuzzy_eq_eps(&other[1], epsilon) &&
self[2].fuzzy_eq_eps(&other[2], epsilon)
}
}
2013-03-31 11:02:36 +00:00
macro_rules! mat3_type(
($name:ident <$T:ty, $V:ty>) => (
pub impl $name {
#[inline(always)] fn new(c0r0: $T, c0r1: $T, c0r2: $T, c1r0: $T, c1r1: $T, c1r2: $T, c2r0: $T, c2r1: $T, c2r2: $T)
2013-04-02 05:12:13 +00:00
-> $name { BaseMat3::new(c0r0, c0r1, c0r2, c1r0, c1r1, c1r2, c2r0, c2r1, c2r2) }
2013-03-31 11:02:36 +00:00
#[inline(always)] fn from_cols(c0: $V, c1: $V, c2: $V)
2013-04-02 05:12:13 +00:00
-> $name { BaseMat3::from_cols(c0, c1, c2) }
#[inline(always)] fn from_value(v: $T) -> $name { BaseMat::from_value(v) }
2013-03-31 11:02:36 +00:00
2013-04-02 05:12:13 +00:00
#[inline(always)] fn identity() -> $name { BaseMat::identity() }
#[inline(always)] fn zero() -> $name { BaseMat::zero() }
2013-03-31 11:02:36 +00:00
2013-04-02 05:12:13 +00:00
#[inline(always)] fn from_angle_x(radians: $T) -> $name { BaseMat3::from_angle_x(radians) }
#[inline(always)] fn from_angle_y(radians: $T) -> $name { BaseMat3::from_angle_y(radians) }
#[inline(always)] fn from_angle_z(radians: $T) -> $name { BaseMat3::from_angle_z(radians) }
#[inline(always)] fn from_angle_xyz(radians_x: $T, radians_y: $T, radians_z: $T) -> $name { BaseMat3::from_angle_xyz(radians_x, radians_y, radians_z) }
#[inline(always)] fn from_angle_axis(radians: $T, axis: &$V) -> $name { BaseMat3::from_angle_axis(radians, axis) }
#[inline(always)] fn from_axes(x: $V, y: $V, z: $V) -> $name { BaseMat3::from_axes(x, y, z) }
#[inline(always)] fn look_at(dir: &$V, up: &$V) -> $name { BaseMat3::look_at(dir, up) }
2013-03-31 11:02:36 +00:00
#[inline(always)] fn dim() -> uint { 3 }
#[inline(always)] fn rows() -> uint { 3 }
#[inline(always)] fn cols() -> uint { 3 }
#[inline(always)] fn size_of() -> uint { sys::size_of::<$name>() }
}
)
)
2013-03-31 11:02:36 +00:00
// a 3×3 single-precision floating-point matrix
pub type mat3 = Mat3<f32>;
// a 3×3 double-precision floating-point matrix
pub type dmat3 = Mat3<f64>;
2013-03-31 11:02:36 +00:00
mat3_type!(mat3<f32,vec3>)
mat3_type!(dmat3<f64,dvec3>)
2013-03-31 11:02:36 +00:00
// Rust-style type aliases
pub type Mat3f = Mat3<float>;
pub type Mat3f32 = Mat3<f32>;
pub type Mat3f64 = Mat3<f64>;
2013-03-31 11:02:36 +00:00
mat3_type!(Mat3f<float,Vec3f>)
mat3_type!(Mat3f32<f32,Vec3f32>)
mat3_type!(Mat3f64<f64,Vec3f64>)
/**
* A 4 x 4 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
* * `w` - the fourth column vector of the matrix
*/
#[deriving(Eq)]
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
impl<T:Copy + Float> BaseMat<T, Vec4<T>> for Mat4<T> {
#[inline(always)]
fn col(&self, i: uint) -> Vec4<T> { self[i] }
#[inline(always)]
fn row(&self, i: uint) -> Vec4<T> {
2013-04-02 05:12:13 +00:00
BaseVec4::new(self[0][i],
self[1][i],
self[2][i],
self[3][i])
}
/**
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2 c3
* +-----+-----+-----+-----+
* r0 | val | 0 | 0 | 0 |
* +-----+-----+-----+-----+
* r1 | 0 | val | 0 | 0 |
* +-----+-----+-----+-----+
* r2 | 0 | 0 | val | 0 |
* +-----+-----+-----+-----+
* r3 | 0 | 0 | 0 | val |
* +-----+-----+-----+-----+
* ~~~
*/
#[inline(always)]
fn from_value(value: T) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new(value, zero(), zero(), zero(),
zero(), value, zero(), zero(),
zero(), zero(), value, zero(),
zero(), zero(), zero(), value)
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 1 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 1 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn identity() -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new( one::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), one::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), one::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), one::<T>())
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
fn zero() -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new(zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>(),
zero::<T>(), zero::<T>(), zero::<T>(), zero::<T>())
}
#[inline(always)]
fn mul_t(&self, value: T) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value),
self[3].mul_t(value))
}
#[inline(always)]
fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
2013-04-02 05:12:13 +00:00
BaseVec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
}
#[inline(always)]
fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]),
self[3].add_v(&other[3]))
}
#[inline(always)]
fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]),
self[3].sub_v(&other[3]))
}
#[inline(always)]
fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new(self.row(0).dot(&other.col(0)),
self.row(1).dot(&other.col(0)),
self.row(2).dot(&other.col(0)),
self.row(3).dot(&other.col(0)),
2013-04-02 05:12:13 +00:00
self.row(0).dot(&other.col(1)),
self.row(1).dot(&other.col(1)),
self.row(2).dot(&other.col(1)),
self.row(3).dot(&other.col(1)),
2013-04-02 05:12:13 +00:00
self.row(0).dot(&other.col(2)),
self.row(1).dot(&other.col(2)),
self.row(2).dot(&other.col(2)),
self.row(3).dot(&other.col(2)),
2013-04-02 05:12:13 +00:00
self.row(0).dot(&other.col(3)),
self.row(1).dot(&other.col(3)),
self.row(2).dot(&other.col(3)),
self.row(3).dot(&other.col(3)))
}
fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
fn determinant(&self) -> T {
2013-04-02 05:12:13 +00:00
let m0: Mat3<T> = BaseMat3::new(self[1][1], self[2][1], self[3][1],
self[1][2], self[2][2], self[3][2],
self[1][3], self[2][3], self[3][3]);
let m1: Mat3<T> = BaseMat3::new(self[0][1], self[2][1], self[3][1],
self[0][2], self[2][2], self[3][2],
self[0][3], self[2][3], self[3][3]);
let m2: Mat3<T> = BaseMat3::new(self[0][1], self[1][1], self[3][1],
self[0][2], self[1][2], self[3][2],
self[0][3], self[1][3], self[3][3]);
let m3: Mat3<T> = BaseMat3::new(self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2],
self[0][3], self[1][3], self[2][3]);
self[0][0] * m0.determinant() -
self[1][0] * m1.determinant() +
self[2][0] * m2.determinant() -
self[3][0] * m3.determinant()
}
fn trace(&self) -> T {
self[0][0] + self[1][1] + self[2][2] + self[3][3]
}
fn inverse(&self) -> Option<Mat4<T>> {
let d = self.determinant();
if d.fuzzy_eq(&zero()) {
None
} else {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = *self;
2013-04-02 05:12:13 +00:00
let mut I: Mat4<T> = BaseMat::identity();
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if abs(A[j][i]) > abs(A[j][i1]) {
i1 = i;
}
}
unsafe {
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
// Scale col j to have a unit diagonal
I.col_mut(j).div_self_t(A[j][j]);
A.col_mut(j).div_self_t(A[j][j]);
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
I.col_mut(i).sub_self_v(&I[j].mul_t(A[i][j]));
A.col_mut(i).sub_self_v(&A[j].mul_t(A[i][j]));
}
}
}
}
Some(I)
}
}
#[inline(always)]
fn transpose(&self) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::new(self[0][0], self[1][0], self[2][0], self[3][0],
self[0][1], self[1][1], self[2][1], self[3][1],
self[0][2], self[1][2], self[2][2], self[3][2],
self[0][3], self[1][3], self[2][3], self[3][3])
}
#[inline(always)]
fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => fail!(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
*self.col_mut(a) <-> *self.col_mut(b);
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
self.w.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat4<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
2013-04-02 05:12:13 +00:00
(*self) = BaseMat::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
self.col_mut(3).mul_self_t(value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
self.col_mut(3).add_self_v(&other[3]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
self.col_mut(3).sub_self_v(&other[3]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail!(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
*self.col_mut(0).index_mut(1) <-> *self.col_mut(1).index_mut(0);
*self.col_mut(0).index_mut(2) <-> *self.col_mut(2).index_mut(0);
*self.col_mut(0).index_mut(3) <-> *self.col_mut(3).index_mut(0);
*self.col_mut(1).index_mut(0) <-> *self.col_mut(0).index_mut(1);
*self.col_mut(1).index_mut(2) <-> *self.col_mut(2).index_mut(1);
*self.col_mut(1).index_mut(3) <-> *self.col_mut(3).index_mut(1);
*self.col_mut(2).index_mut(0) <-> *self.col_mut(0).index_mut(2);
*self.col_mut(2).index_mut(1) <-> *self.col_mut(1).index_mut(2);
*self.col_mut(2).index_mut(3) <-> *self.col_mut(3).index_mut(2);
*self.col_mut(3).index_mut(0) <-> *self.col_mut(0).index_mut(3);
*self.col_mut(3).index_mut(1) <-> *self.col_mut(1).index_mut(3);
*self.col_mut(3).index_mut(2) <-> *self.col_mut(2).index_mut(3);
}
#[inline(always)]
fn is_identity(&self) -> bool {
2013-04-02 05:12:13 +00:00
self.fuzzy_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_diagonal(&self) -> bool {
self[0][1].fuzzy_eq(&zero()) &&
self[0][2].fuzzy_eq(&zero()) &&
self[0][3].fuzzy_eq(&zero()) &&
self[1][0].fuzzy_eq(&zero()) &&
self[1][2].fuzzy_eq(&zero()) &&
self[1][3].fuzzy_eq(&zero()) &&
self[2][0].fuzzy_eq(&zero()) &&
self[2][1].fuzzy_eq(&zero()) &&
self[2][3].fuzzy_eq(&zero()) &&
self[3][0].fuzzy_eq(&zero()) &&
self[3][1].fuzzy_eq(&zero()) &&
self[3][2].fuzzy_eq(&zero())
}
#[inline(always)]
fn is_rotated(&self) -> bool {
2013-04-02 05:12:13 +00:00
!self.fuzzy_eq(&BaseMat::identity())
}
#[inline(always)]
fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[0][3].fuzzy_eq(&self[3][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[1][3].fuzzy_eq(&self[3][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2]) &&
self[2][3].fuzzy_eq(&self[3][2]) &&
self[3][0].fuzzy_eq(&self[0][3]) &&
self[3][1].fuzzy_eq(&self[1][3]) &&
self[3][2].fuzzy_eq(&self[2][3])
}
#[inline(always)]
fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&zero())
}
#[inline(always)]
fn to_ptr(&self) -> *T {
unsafe { cast::transmute(self) }
}
}
impl<T:Copy + Float> BaseMat4<T, Vec4<T>> for Mat4<T> {
/**
* Construct a 4 x 4 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix
* * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0r0 | c1r0 | c2r0 | c3r0 |
* +------+------+------+------+
* r1 | c0r1 | c1r1 | c2r1 | c3r1 |
* +------+------+------+------+
* r2 | c0r2 | c1r2 | c2r2 | c3r2 |
* +------+------+------+------+
* r3 | c0r3 | c1r3 | c2r3 | c3r3 |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
2013-04-02 04:01:38 +00:00
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::from_cols(BaseVec4::new::<T,Vec4<T>>(c0r0, c0r1, c0r2, c0r3),
BaseVec4::new::<T,Vec4<T>>(c1r0, c1r1, c1r2, c1r3),
BaseVec4::new::<T,Vec4<T>>(c2r0, c2r1, c2r2, c2r3),
BaseVec4::new::<T,Vec4<T>>(c3r0, c3r1, c3r2, c3r3))
}
/**
* Construct a 4 x 4 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
* * `c3` - the fourth column vector of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0.x | c1.x | c2.x | c3.x |
* +------+------+------+------+
* r1 | c0.y | c1.y | c2.y | c3.y |
* +------+------+------+------+
* r2 | c0.z | c1.z | c2.z | c3.z |
* +------+------+------+------+
* r3 | c0.w | c1.w | c2.w | c3.w |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
2013-04-02 04:01:38 +00:00
fn from_cols(c0: Vec4<T>, c1: Vec4<T>, c2: Vec4<T>, c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: c0, y: c1, z: c2, w: c3 }
}
}
impl<T:Copy + Float> Neg<Mat4<T>> for Mat4<T> {
#[inline(always)]
fn neg(&self) -> Mat4<T> {
2013-04-02 05:12:13 +00:00
BaseMat4::from_cols(-self[0], -self[1], -self[2], -self[3])
}
}
impl<T:Copy> Index<uint, Vec4<T>> for Mat4<T> {
#[inline(always)]
fn index(&self, i: &uint) -> Vec4<T> {
unsafe { do vec::raw::buf_as_slice(cast::transmute(self), 4) |slice| { slice[*i] } }
}
}
impl<T:Copy + Float> FuzzyEq<T> for Mat4<T> {
#[inline(always)]
fn fuzzy_eq(&self, other: &Mat4<T>) -> bool {
self.fuzzy_eq_eps(other, &num::cast(FUZZY_EPSILON))
}
#[inline(always)]
fn fuzzy_eq_eps(&self, other: &Mat4<T>, epsilon: &T) -> bool {
self[0].fuzzy_eq_eps(&other[0], epsilon) &&
self[1].fuzzy_eq_eps(&other[1], epsilon) &&
self[2].fuzzy_eq_eps(&other[2], epsilon) &&
self[3].fuzzy_eq_eps(&other[3], epsilon)
}
}
2013-03-31 11:02:36 +00:00
macro_rules! mat4_type(
($name:ident <$T:ty, $V:ty>) => (
pub impl $name {
#[inline(always)] fn new(c0r0: $T, c0r1: $T, c0r2: $T, c0r3: $T, c1r0: $T, c1r1: $T, c1r2: $T, c1r3: $T, c2r0: $T, c2r1: $T, c2r2: $T, c2r3: $T, c3r0: $T, c3r1: $T, c3r2: $T, c3r3: $T)
2013-04-02 05:12:13 +00:00
-> $name { BaseMat4::new(c0r0, c0r1, c0r2, c0r3, c1r0, c1r1, c1r2, c1r3, c2r0, c2r1, c2r2, c2r3, c3r0, c3r1, c3r2, c3r3) }
2013-03-31 11:02:36 +00:00
#[inline(always)] fn from_cols(c0: $V, c1: $V, c2: $V, c3: $V)
2013-04-02 05:12:13 +00:00
-> $name { BaseMat4::from_cols(c0, c1, c2, c3) }
#[inline(always)] fn from_value(v: $T) -> $name { BaseMat::from_value(v) }
2013-03-31 11:02:36 +00:00
2013-04-02 05:12:13 +00:00
#[inline(always)] fn identity() -> $name { BaseMat::identity() }
#[inline(always)] fn zero() -> $name { BaseMat::zero() }
2013-03-31 11:02:36 +00:00
#[inline(always)] fn dim() -> uint { 4 }
#[inline(always)] fn rows() -> uint { 4 }
#[inline(always)] fn cols() -> uint { 4 }
#[inline(always)] fn size_of() -> uint { sys::size_of::<$name>() }
}
)
)
// GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification]
// (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf).
2013-03-31 11:02:36 +00:00
// a 4×4 single-precision floating-point matrix
pub type mat4 = Mat4<f32>;
// a 4×4 double-precision floating-point matrix
pub type dmat4 = Mat4<f64>;
2013-03-31 11:02:36 +00:00
mat4_type!(mat4<f32,vec4>)
mat4_type!(dmat4<f64,dvec4>)
2013-03-31 11:02:36 +00:00
// Rust-style type aliases
pub type Mat4f = Mat4<float>;
pub type Mat4f32 = Mat4<f32>;
pub type Mat4f64 = Mat4<f64>;
2013-03-31 11:02:36 +00:00
mat4_type!(Mat4f<float,Vec4f>)
mat4_type!(Mat4f32<f32,Vec4f32>)
mat4_type!(Mat4f64<f64,Vec4f64>)