cgmath/src/quat.rs

470 lines
12 KiB
Rust
Raw Normal View History

2012-12-05 08:09:53 +00:00
/**
* > Every morning in the early part of October 1843, on my coming down to
* breakfast, your brother William Edward and yourself used to ask me: "Well,
* Papa, can you multiply triples?" Whereto I was always obliged to reply,
* with a sad shake of the head, "No, I can only add and subtract them."
*
* Sir William Hamilton
*/
use core::cast::transmute;
use core::cmp::{Eq, Ord};
use core::ptr::to_unsafe_ptr;
2012-11-25 12:05:47 +00:00
use core::sys::size_of;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
2012-12-08 02:59:10 +00:00
use angle::Angle;
use funs::common::*;
use funs::exponential::*;
use funs::triganomic::*;
use mat::{Mat3, Mat4};
2012-12-11 23:55:42 +00:00
use num::types::{Float, Number};
use num::conv::cast;
use vec::Vec3;
2012-12-03 22:31:26 +00:00
/**
* The base quaternion trait
*
* # Type parameters
*
* * `T` - The type of the components. Should be a floating point type.
2012-12-05 08:09:53 +00:00
* * `V3` - The 3-dimensional vector type that will containin the imaginary
* components of the quaternion.
2012-12-03 22:31:26 +00:00
*/
2012-12-12 01:29:35 +00:00
pub trait Quaternion<T,V3>: Index<uint, T> Eq Neg<self> {
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
2012-12-03 22:31:26 +00:00
*/
static pure fn identity() -> self;
2012-11-20 06:57:32 +00:00
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The additive identity, ie: `q = 0 + 0i + 0j + 0i`
2012-12-03 22:31:26 +00:00
*/
static pure fn zero() -> self;
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The result of multiplying the quaternion a scalar
2012-12-03 22:31:26 +00:00
*/
pure fn mul_t(&self, value: T) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The result of dividing the quaternion a scalar
2012-12-03 22:31:26 +00:00
*/
pure fn div_t(&self, value: T) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The result of multiplying the quaternion by a vector
2012-12-03 22:31:26 +00:00
*/
pure fn mul_v(&self, vec: &V3) -> V3;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The sum of this quaternion and `other`
2012-12-03 22:31:26 +00:00
*/
pure fn add_q(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The sum of this quaternion and `other`
2012-12-03 22:31:26 +00:00
*/
pure fn sub_q(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The the result of multipliplying the quaternion by `other`
2012-12-03 22:31:26 +00:00
*/
pure fn mul_q(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
2012-12-03 22:31:26 +00:00
* The dot product of the quaternion and `other`
*/
pure fn dot(&self, other: &self) -> T;
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The conjugate of the quaternion
*/
pure fn conjugate(&self) -> self;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The multiplicative inverse of the quaternion
2012-12-03 22:31:26 +00:00
*/
pure fn inverse(&self) -> self;
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The squared magnitude of the quaternion. This is useful for
* magnitude comparisons where the exact magnitude does not need to be
* calculated.
*/
pure fn magnitude2(&self) -> T;
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The magnitude of the quaternion
*
* # Performance notes
*
2012-12-05 08:09:53 +00:00
* For instances where the exact magnitude of the quaternion does not need
* to be known, for example for quaternion-quaternion magnitude comparisons,
* it is advisable to use the `magnitude2` method instead.
*/
pure fn magnitude(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
2012-12-05 08:09:53 +00:00
* # Return value
*
* The normalized quaternion
2012-12-03 22:31:26 +00:00
*/
pure fn normalize(&self) -> self;
2012-12-03 22:31:26 +00:00
/**
* Normalised linear interpolation
2012-12-05 08:09:53 +00:00
*
* # Return value
*
* The intoperlated quaternion
2012-12-03 22:31:26 +00:00
*/
pure fn nlerp(&self, other: &self, amount: T) -> self;
2012-12-03 22:31:26 +00:00
/**
* Perform a spherical linear interpolation between the quaternion and
* `other`.
*
2012-12-05 08:09:53 +00:00
* # Return value
*
* The intoperlated quaternion
*
* # Performance notes
*
* This is more accurate than `nlerp` but is also more
2012-12-03 22:31:26 +00:00
* computationally intensive.
*/
pure fn slerp(&self, other: &self, amount: T) -> self;
2012-12-03 22:31:26 +00:00
/**
* Convert the quaternion to a 3 x 3 rotation matrix
*/
pure fn to_mat3(&self) -> Mat3<T>;
2012-12-03 22:31:26 +00:00
/**
* Convert the quaternion to a 4 x 4 transformation matrix
*/
pure fn to_mat4(&self) -> Mat4<T>;
2012-12-12 01:29:35 +00:00
/**
* # Return value
*
* A pointer to the first component of the quaternion
*/
pure fn to_ptr(&self) -> *T;
}
pub trait ToQuat<T> {
/**
* Convert `self` to a quaternion
*/
pure fn to_Quat() -> Quat<T>;
}
/**
* A quaternion in scalar/vector form
*
* # Type parameters
*
* * `T` - The type of the components. Should be a floating point type.
*
* # Fields
*
* * `s` - the scalar component
* * `v` - a vector containing the three imaginary components
*/
pub struct Quat<T> { s: T, v: Vec3<T> }
2012-12-12 01:29:35 +00:00
pub impl<T:Copy Float> Quat<T> {
2012-12-03 22:31:26 +00:00
/**
* Construct the quaternion from one scalar component and three
* imaginary components
*
* # Arguments
*
* * `w` - the scalar component
* * `xi` - the fist imaginary component
* * `yj` - the second imaginary component
* * `zk` - the third imaginary component
2012-12-03 22:31:26 +00:00
*/
#[inline(always)]
static pure fn new(w: T, xi: T, yj: T, zk: T) -> Quat<T> {
Quat::from_sv(move w, move Vec3::new(move xi, move yj, move zk))
}
2012-12-03 22:31:26 +00:00
/**
* Construct the quaternion from a scalar and a vector
*
* # Arguments
*
* * `s` - the scalar component
* * `v` - a vector containing the three imaginary components
2012-12-03 22:31:26 +00:00
*/
#[inline(always)]
static pure fn from_sv(s: T, v: Vec3<T>) -> Quat<T> {
Quat { s: move s, v: move v }
}
2012-12-01 04:19:21 +00:00
#[inline(always)]
2012-12-12 01:29:35 +00:00
static pure fn from_axis_angle<A:Angle<T>>(axis: &Vec3<T>, theta: A) -> Quat<T> {
// let half = theta.to_radians() / Number::from(2);
let half = theta.to_radians() / cast(2);
Quat::from_sv(cos(&half), axis.mul_t(sin(&half)))
}
2012-12-01 04:19:21 +00:00
}
pub impl<T:Copy> Quat<T>: Index<uint, T> {
#[inline(always)]
2012-12-08 00:00:50 +00:00
pure fn index(&self, i: uint) -> T {
2012-12-12 01:29:35 +00:00
unsafe { do buf_as_slice(
transmute::<*Quat<T>, *T>(
2012-12-12 01:29:35 +00:00
to_unsafe_ptr(self)), 4) |slice| { slice[i] }
}
}
}
pub impl<T:Copy Float Exp Extent InvTrig> Quat<T>: Quaternion<T, Vec3<T>> {
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn identity() -> Quat<T> {
2012-12-03 06:19:53 +00:00
Quat::new(Number::from(1),
Number::from(0),
Number::from(0),
Number::from(0))
2012-11-20 06:57:32 +00:00
}
#[inline(always)]
static pure fn zero() -> Quat<T> {
2012-12-03 06:19:53 +00:00
Quat::new(Number::from(0),
Number::from(0),
Number::from(0),
Number::from(0))
2012-11-20 06:57:32 +00:00
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Quat<T> {
Quat::new(self[0] * value,
self[1] * value,
self[2] * value,
self[3] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Quat<T> {
Quat::new(self[0] / value,
self[1] / value,
self[2] / value,
self[3] / value)
}
#[inline(always)]
pure fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
let tmp = self.v.cross(vec).add_v(&vec.mul_t(self.s));
2012-12-03 06:19:53 +00:00
self.v.cross(&tmp).mul_t(Number::from(2)).add_v(vec)
}
#[inline(always)]
pure fn add_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(self[0] + other[0],
self[1] + other[1],
self[2] + other[2],
self[3] + other[3])
}
#[inline(always)]
pure fn sub_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(self[0] - other[0],
self[1] - other[1],
self[2] - other[2],
self[3] - other[3])
}
#[inline(always)]
pure fn mul_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
}
#[inline(always)]
pure fn dot(&self, other: &Quat<T>) -> T {
self.s * other.s + self.v.dot(&other.v)
}
#[inline(always)]
pure fn conjugate(&self) -> Quat<T> {
Quat::from_sv(self.s, -self.v)
}
#[inline(always)]
pure fn inverse(&self) -> Quat<T> {
self.conjugate().div_t(self.magnitude2())
}
#[inline(always)]
pure fn magnitude2(&self) -> T {
self.s * self.s + self.v.length2()
}
#[inline(always)]
pure fn magnitude(&self) -> T {
self.magnitude2().sqrt()
}
#[inline(always)]
pure fn normalize(&self) -> Quat<T> {
2012-12-03 06:19:53 +00:00
let mut n: T = Number::from(1);
n /= self.magnitude();
return self.mul_t(n);
}
#[inline(always)]
pure fn nlerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
2012-12-03 06:19:53 +00:00
let _1: T = Number::from(1);
self.mul_t(_1 - amount).add_q(&other.mul_t(amount)).normalize()
}
/**
* Spherical Linear Intoperlation
*
* Both quaternions should be normalized first, or else strange things will
* will happen...
*
* # Performance notes
*
* The `acos` operation used in `slerp` is an expensive operation, so unless
* your quarternions a far away from each other it's generally more advisable
* to use `nlerp` when you know your rotations are going to be small.
*
* - [Understanding Slerp, Then Not Using It]
* (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
* - [Arcsynthesis OpenGL tutorial]
* (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
*/
#[inline(always)]
pure fn slerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
2012-12-03 22:24:03 +00:00
let dot = self.dot(other);
2012-12-03 06:19:53 +00:00
let dot_threshold = Number::from(0.9995);
if dot > dot_threshold {
return self.nlerp(other, amount); // if quaternions are close together use `nlerp`
} else {
let robust_dot = dot.clamp(&-Number::from(1),
&Number::from(1)); // stay within the domain of acos()
let theta_0 = acos(&robust_dot); // the angle between the quaternions
let theta = theta_0 * amount; // the fraction of theta specified by `amount`
let q = other.sub_q(&self.mul_t(robust_dot))
.normalize();
return self.mul_t(cos(&theta)).add_q(&q.mul_t(sin(&theta)));
}
}
#[inline(always)]
pure fn to_mat3(&self) -> Mat3<T> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
2012-12-03 22:24:03 +00:00
let _1: T = Number::from(1);
2012-12-07 04:16:28 +00:00
Mat3::new(_1 - yy2 - zz2, xy2 + sz2, xz2 - sy2,
xy2 - sz2, _1 - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, _1 - xx2 - yy2)
}
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
self.to_mat3().to_mat4()
}
2012-12-12 01:29:35 +00:00
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Quat<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
2012-12-12 01:29:35 +00:00
pub impl<T:Copy Float> Quat<T>: Neg<Quat<T>> {
#[inline(always)]
2012-12-01 04:19:21 +00:00
pure fn neg(&self) -> Quat<T> {
Quat::new(-self[0], -self[1], -self[2], -self[3])
}
}
2012-11-29 11:30:40 +00:00
pub impl<T:Copy Eq> Quat<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Quat<T>) -> bool {
2012-11-29 11:30:40 +00:00
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2] &&
self[3] == other[3]
}
#[inline(always)]
pure fn ne(&self, other: &Quat<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Quat<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Quat<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
2012-12-08 00:00:50 +00:00
}